【題目】2018年1月20日,山西迎來了“復(fù)興號”列車,與“和諧號”相比,“復(fù)興號”列車時(shí)速更快,安全性更好.已知“太原南﹣北京西”全程大約500千米,“復(fù)興號”G92次列車平均每小時(shí)比某列“和諧號”列車多行駛40千米,其行駛時(shí)間是該列“和諧號”列車行駛時(shí)間的(兩列車中途停留時(shí)間均除外).經(jīng)查詢,“復(fù)興號”G92次列車從太原南到北京西,中途只有石家莊一站,停留10分鐘.求乘坐“復(fù)興號”G92次列車從太原南到北京西需要多長時(shí)間.
【答案】乘坐“復(fù)興號”G92次列車從太原南到北京西需要小時(shí).
【解析】
設(shè)“復(fù)興號”G92次列車從太原南到北京西的行駛時(shí)間需要x小時(shí),則“和諧號”列車的行駛時(shí)間需要x小時(shí),根據(jù)速度=路程÷時(shí)間結(jié)合“復(fù)興號”G92次列車平均每小時(shí)比某列“和諧號”列車多行駛40千米,即可得出關(guān)于x的分式方程,解之經(jīng)檢驗(yàn)后即可得出結(jié)論.
設(shè)“復(fù)興號”G92次列車從太原南到北京西的行駛時(shí)間需要x小時(shí),則“和諧號”列車的行駛時(shí)間需要x小時(shí),
根據(jù)題意得:,
解得:x=,
經(jīng)檢驗(yàn),x=是原分式方程的解,
∴x+=
答:乘坐“復(fù)興號”G92次列車從太原南到北京西需要小時(shí).
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某電器商場銷售甲、乙兩種品牌空調(diào),已知每臺乙種品牌空調(diào)的進(jìn)價(jià)比每臺甲種品牌空調(diào)的進(jìn)價(jià)高20%,用7200元購進(jìn)的乙種品牌空調(diào)數(shù)量比用3000元購進(jìn)的甲種品牌空調(diào)數(shù)量多2 臺.
(1)求甲、乙兩種品牌空調(diào)的進(jìn)貨價(jià);
(2)該商場擬用不超過16000 元購進(jìn)甲、乙兩種品牌空調(diào)共10臺進(jìn)行銷售,其中甲種品牌空調(diào)的售價(jià)為2500元/臺,乙種品牌空調(diào)的售價(jià)為3500元/臺.請你幫該商場設(shè)計(jì)一種進(jìn)貨方案,使得在售完這10 臺空調(diào)后獲利最大,并求出最大利潤.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有這樣一個(gè)問題:探究函數(shù)y= ﹣ x的圖象與性質(zhì). 小東根據(jù)學(xué)習(xí)函數(shù)的經(jīng)驗(yàn),對函數(shù)y= ﹣ x的圖象與性質(zhì)進(jìn)行了探究.
下面是小東的探究過程,請補(bǔ)充完整,并解決相關(guān)問題:
(1)函數(shù)y= ﹣ x的自變量x的取值范圍是;
(2)下表是y與x的幾組對應(yīng)值,求m的值;
x | … | ﹣4 | ﹣3 | ﹣2 | ﹣ | ﹣1 | ﹣ |
| 1 | 2 | 3 | 4 | … |
y | … |
|
|
|
|
|
|
|
| ﹣ | ﹣ | m | … |
(3)如圖,在平面直角坐標(biāo)系xOy中,描出了以上表中各對對應(yīng)值為坐標(biāo)的點(diǎn).根據(jù)描出的點(diǎn),畫出該函數(shù)的圖象;
(4)進(jìn)一步探究發(fā)現(xiàn),該函數(shù)圖象在第二象限內(nèi)的最低點(diǎn)的坐標(biāo)是(﹣2, ),結(jié)合函數(shù)的圖象,寫出該函數(shù)的其它性質(zhì)(一條即可) .
(5)根據(jù)函數(shù)圖象估算方程 ﹣ x=2的根為 . (精確到0.1)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩名同學(xué)相距20m,他們同時(shí)出發(fā),同向而行,甲在乙后,圖中L1、L2分別表示他們二人的路程與時(shí)間的關(guān)系,看圖回答下列問題:
(1)20s時(shí)甲跑了多少米?乙跑了多少米?
(2)甲用幾秒鐘可追上乙?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,Rt△ABC中,AB⊥BC,AB=6,BC=4,P是△ABC內(nèi)部的一個(gè)動(dòng)點(diǎn),且滿足∠PAB=∠PBC,則線段CP長的最小值為( )
A.
B.2
C.
D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】雷達(dá)二維平面定位的主要原理是:測量目標(biāo)的兩個(gè)信息―距離和角度,目標(biāo)的表示方法為,其中,m表示目標(biāo)與探測器的距離;表示以正東為始邊,逆時(shí)針旋轉(zhuǎn)后的角度.如圖,雷達(dá)探測器顯示在點(diǎn)A,B,C處有目標(biāo)出現(xiàn),其中,目標(biāo)A的位置表示為,目標(biāo)C的位置表示為.用這種方法表示目標(biāo)B的位置,正確的是( )
A. (-4, 150°) B. (4, 150°) C. (-2, 150°) D. (2, 150°)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+bx﹣5(a≠0)經(jīng)過點(diǎn)A(4,﹣5),與x軸的負(fù)半軸交于點(diǎn)B,與y軸交于點(diǎn)C,且OC=5OB,拋物線的頂點(diǎn)為點(diǎn)D.
(1)求這條拋物線的表達(dá)式;
(2)連結(jié)AB、BC、CD、DA,求四邊形ABCD的面積;
(3)如果點(diǎn)E在y軸的正半軸上,且∠BEO=∠ABC,求點(diǎn)E的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,A,P,B,C是圓上的四個(gè)點(diǎn),∠APC=∠CPB=60°,AP,CB的延長線相交于點(diǎn)D.
(1)求證:△ABC是等邊三角形;
(2)若∠PAC=90°,AB=2 ,求PD的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在等腰△ABC中,∠A=80°,∠B和∠C的平分線相交于點(diǎn)O
(1)連接OA,求∠OAC的度數(shù);
(2)求:∠BOC。
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com