【題目】某商場(chǎng)購進(jìn)一批日用品,若按每件5元的價(jià)格銷售,每月能賣出3萬件;若按每件6元的價(jià)格銷售,每月能賣出2萬件,假定每月銷售件數(shù)(件)與價(jià)格(元/件)之間滿足一次函數(shù)關(guān)系.
(1)試求:y與x之間的函數(shù)關(guān)系式;
(2)這批日用品購進(jìn)時(shí)進(jìn)價(jià)為4元,則當(dāng)銷售價(jià)格定為多少時(shí),才能使每月的潤最大?每月的最大利潤是多少?
【答案】(1)y=﹣10000x+80000;(2)銷售價(jià)格定為6元時(shí),每月的利潤最大,每月的最大利潤為40000元
【解析】試題分析:(1)利用待定系數(shù)法求得y與x之間的一次函數(shù)關(guān)系式;
(2)根據(jù)“利潤=(售價(jià)-成本)×售出件數(shù)”,可得利潤與銷售價(jià)格之間的二次函數(shù)關(guān)系式,然后求出其最大值.
試題解析:(1)由題意,可設(shè)
把 代入得:
解得:
所以y與x之間的關(guān)系式為:
(2)設(shè)利潤為元,則
整理得
所以當(dāng)時(shí), 取得最大值,最大值為40000元.
答:當(dāng)銷售價(jià)格定為6元時(shí),每月的利潤最大,每月的最大利潤為40000元.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了打造區(qū)域中心城市,實(shí)現(xiàn)攀枝花跨越式發(fā)展,我市花城新區(qū)建設(shè)正按投資計(jì)劃有序推進(jìn).花城新區(qū)建設(shè)工程部,因道路建設(shè)需要開挖土石方,計(jì)劃每小時(shí)挖掘土石方540m3 , 現(xiàn)決定向某大型機(jī)械租賃公司租用甲、乙兩種型號(hào)的挖掘機(jī)來完成這項(xiàng)工作,租賃公司提供的挖掘機(jī)有關(guān)信息如下表所示:
租金(單位:元/臺(tái)時(shí)) | 挖掘土石方量(單位:m3/臺(tái)時(shí)) | |
甲型挖掘機(jī) | 100 | 60 |
乙型挖掘機(jī) | 120 | 80 |
(1)若租用甲、乙兩種型號(hào)的挖掘機(jī)共8臺(tái),恰好完成每小時(shí)的挖掘量,則甲、乙兩種型號(hào)的挖掘機(jī)各需多少臺(tái)?
(2)如果每小時(shí)支付的租金不超過850元,又恰好完成每小時(shí)的挖掘量,那么共有哪幾種不同的租用方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】古希臘著名的畢達(dá)哥拉斯學(xué)派把1,3,6,10,…這樣的數(shù)稱為“三角形數(shù)”,而把1,4,9,16,…這樣的數(shù)稱為“正方形數(shù)”.從圖中可以發(fā)現(xiàn),任何一個(gè)大于1的“正方形數(shù)”都可以看作兩個(gè)相鄰“三角形數(shù)”之和.下列等式中,符合這一規(guī)律的是( )
A. 9=4+5B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校組織學(xué)生書法比賽,對(duì)參賽作品按A、B、C、D四個(gè)等級(jí)進(jìn)行了評(píng)定.現(xiàn)隨機(jī)取部分學(xué)生書法作品的評(píng)定結(jié)果進(jìn)行分析,并繪制扇形統(tǒng)計(jì)圖和條形統(tǒng)計(jì)圖如下:
根據(jù)上述信息完成下列問題:
(1)求這次抽取的樣本的容量;
(2)請(qǐng)?jiān)趫D②中把條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)已知該校這次活動(dòng)共收到參賽作品750份,請(qǐng)你估計(jì)參賽作品達(dá)到B級(jí)以上(即A級(jí)和B級(jí))有多少份?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了抓住梵凈山文化藝術(shù)節(jié)的商機(jī),某商店決定購進(jìn)A、B兩種藝術(shù)節(jié)紀(jì)念品.若購進(jìn)A種紀(jì)念品8件,B種紀(jì)念品3件,需要950元;若購進(jìn)A種紀(jì)念品5件,B種紀(jì)念品6件,需要800元.
(1)求購進(jìn)A、B兩種紀(jì)念品每件各需多少元?
(2)若該商店決定購進(jìn)這兩種紀(jì)念品共100件,考慮市場(chǎng)需求和資金周轉(zhuǎn),用于購買這100件紀(jì)念品的資金不少于7500元,但不超過7650元,那么該商店共有幾種進(jìn)貨方案?
(3)若銷售每件A種紀(jì)念品可獲利潤20元,每件B種紀(jì)念品可獲利潤30元,在第(2)問的各種進(jìn)貨方案中,哪一種方案獲利最大?最大利潤是多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知某品牌的飲料有大瓶與小瓶裝之分.某超市花了2100元購進(jìn)一批該品牌的飲料共800瓶,其中,大瓶和小瓶飲料的進(jìn)價(jià)及售價(jià)如右表所示.
大瓶 | 小瓶 | |
進(jìn)價(jià)(元/瓶) | ||
售價(jià)(元/瓶) |
(1)問:該超市購進(jìn)大瓶和小瓶飲料各多少瓶?
(2)當(dāng)大瓶飲料售出了200瓶,小瓶飲料售出了100瓶后,商家決定將剩下的小瓶飲料的售價(jià)降低0.5元銷售,并把其中一定數(shù)量的小瓶飲料作為贈(zèng)品,在顧客一次性購買大瓶飲料時(shí),每滿2瓶就送1瓶小瓶飲料,送完即止.請(qǐng)問:超市要使這批飲料售完后獲得的利潤為1075元,那么小瓶飲料作為贈(zèng)品送出多少瓶?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,邊的垂直平分線交于點(diǎn),邊的垂直平分線交于點(diǎn),與相交于點(diǎn),聯(lián)結(jié)、,若的周長為,的周長為.
(1)求線段的長;
(2)聯(lián)結(jié),求線段的長;
(3)若,求的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,△ABC的三個(gè)頂點(diǎn)分別是A(-2,0),B(0,3),C(3,0).
(1)在所給的圖中,畫出這個(gè)平面直角坐標(biāo)系;
(2)點(diǎn)A經(jīng)過平移后對(duì)應(yīng)點(diǎn)為D(3,-3),將△ABC作同樣的平移得到△DEF,點(diǎn)B的對(duì)應(yīng)點(diǎn)為點(diǎn)E,畫出平移后的△DEF;
(3)在(2)的條件下,點(diǎn)M在直線CD上,若DM=2CM,直接寫出點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】標(biāo)有-3,-2,4的三張不透明的卡片,除正面寫有不同的數(shù)字外,其余的值都相同,將這三張卡片背面朝上洗勻后,第一次從中隨機(jī)抽取一張,并把這張卡片標(biāo)有的數(shù)字記為一次函數(shù)解析式y(tǒng)=kx+b的k值,第二次從余下的兩張卡片中再抽取一張,上面標(biāo)有的數(shù)字記為一次函數(shù)解析式的b值.
(1)寫出k為負(fù)數(shù)的概率;
(2)求一次函數(shù)y=kx+b的圖象不經(jīng)過第一象限的概率.(用樹狀圖或列舉法求解)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com