【題目】如圖,在中,邊的垂直平分線于點(diǎn),邊的垂直平分線于點(diǎn),相交于點(diǎn),聯(lián)結(jié)、,若的周長(zhǎng)為,的周長(zhǎng)為

1)求線段的長(zhǎng);

2)聯(lián)結(jié),求線段的長(zhǎng);

3)若,求的度數(shù).

【答案】1;(2;(3

【解析】

1)根據(jù)AB邊的垂直平分線l1BCD,AC邊的垂直平分線l2BCE,l1l2相交于點(diǎn)O,可得AD=BDAE=CE,繼而可得BC=ADE的周長(zhǎng);
2)連接OA,由AB邊的垂直平分線l1BCD,AC邊的垂直平分線l2BCE,l1l2相交于點(diǎn)O,可得OA=OB=OC,繼而求得答案;
3)由∠BAC=120°,可求得,根據(jù),,得出,即可求解.

1)∵是邊的垂直平分線,∴

是邊的垂直平分線,

2)如圖,

是邊的垂直平分線,∴

是邊的垂直平分線,∴

,∴

3)∵,∴

,,∴

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,△ACB與△ECD都是等腰直角三角形,∠ACB=∠ECD=90°,點(diǎn)D為AB邊上的一點(diǎn),

(1)求證:△ACE≌△BCD;

(2)若DE=13,BD=12,求線段AB的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某種流感病毒,有一人患了這種流感,在每輪傳染中一人將平均傳給x人.

1)求第一輪后患病的人數(shù);(用含x的代數(shù)式表示)

2)在進(jìn)入第二輪傳染之前,有兩位患者被及時(shí)隔離并治愈,問第二輪傳染后總共是否會(huì)有21人患病的情況發(fā)生,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商場(chǎng)購進(jìn)一批日用品,若按每件5元的價(jià)格銷售,每月能賣出3萬件;若按每件6元的價(jià)格銷售,每月能賣出2萬件,假定每月銷售件數(shù)(件)與價(jià)格(元/件)之間滿足一次函數(shù)關(guān)系.

(1)試求:yx之間的函數(shù)關(guān)系式;

(2)這批日用品購進(jìn)時(shí)進(jìn)價(jià)為4元,則當(dāng)銷售價(jià)格定為多少時(shí),才能使每月的潤(rùn)最大?每月的最大利潤(rùn)是多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為加強(qiáng)中小學(xué)生安全和禁毒教育,某校組織了“防溺水、交通安全、禁毒”知識(shí)競(jìng)賽,為獎(jiǎng)勵(lì)在競(jìng)賽中表現(xiàn)優(yōu)異的班級(jí),學(xué)校準(zhǔn)備從體育用品商場(chǎng)一次性購買若干個(gè)足球和籃球(每個(gè)足球的價(jià)格相同,每個(gè)籃球的價(jià)格相同),購買1個(gè)足球和1個(gè)籃球共需159元;足球單價(jià)是籃球單價(jià)的2倍少9元.

(1)求足球和籃球的單價(jià)各是多少元?

(2)根據(jù)學(xué)校實(shí)際情況,需一次性購買足球和籃球共20個(gè),但要求購買足球和籃球的總費(fèi)用不超過1550元,學(xué)校最多可以購買多少個(gè)足球?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小張準(zhǔn)備把一根長(zhǎng)為32cm的鐵絲剪成兩段,并把每一段各圍成一個(gè)正方形.(1)要使這兩個(gè)正方形的面積之和等于40cm2,小張?jiān)撛趺醇簦?/span>

(2)小李對(duì)小張說:“這兩個(gè)正方形的面積之和不可能等于30cm2.”他的說法對(duì)嗎?請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在Rt△ABC中,∠ABC=90°,CD⊥BC,BD與AC相交于點(diǎn)E,AB=9,BC=4,DC=3.

(1)求BE的長(zhǎng)度;

(2)求△ABE的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在美化校園的活動(dòng)中,某興趣小組想借助如圖所示的直角墻角(兩邊足夠長(zhǎng)),用28m長(zhǎng)的籬笆圍成一個(gè)矩形花園ABCD(籬笆只圍AB,BC兩邊),設(shè)AB=xm

1)若花園的面積為192m2,求x的值;

2)若在P處有一棵樹與墻CD,AD的距離分別是15m6m,要將這棵樹圍在花園內(nèi)(含邊界,不考慮樹的粗細(xì)),求x取何值時(shí),花園面積S最大,并求出花園面積S的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,中,對(duì)角線交于點(diǎn),分別是,的中點(diǎn).下列結(jié)論正確的是(

;②;③平分;④平分;⑤四邊形是菱形.

A.③⑤B.①②④C.①②③④D.①②③④⑤

查看答案和解析>>

同步練習(xí)冊(cè)答案