【題目】如圖,二次函數(shù)y=x2﹣4x的圖象與x軸、直線y=x的一個交點分別為點A,B,CD是線段OB上的一動線段,且CD=2,過點C,D的兩直線都平行于y軸,與拋物線相交于點F,E,連接EF.
(1)點A的坐標為 , 線段OB的長=;
(2)設點C的橫坐標為m ①當四邊形CDEF是平行四邊形時,求m的值;
②連接AC、AD,求m為何值時,△ACD的周長最小,并求出這個最小值.

【答案】
(1)(4,0);5
(2)解:①∵點C的橫坐標為m,且CF∥DE∥y軸,

∴C(m,m),F(xiàn)(m,m2﹣4m),

又∵CD=2,且CD是線段OB上的一動線段,

∴D(m+ ,m+ ),E(m+ ,(m+ 2﹣4(m+ )),

∴CF=m﹣(m+ ),DE=m+ ﹣[(m+ 2﹣4(m+ )],

∵當四邊形CDEF是平行四邊形時,CF=DE,

∴m﹣(m+ )=m+ ﹣[(m+ 2﹣4(m+ )],

解得m= ;

②如圖所示,過點A作CD的平行線,過點D作AC的平行線,交于點G,則四邊形ACDG是平行四邊形,

∴AC=DG,

作點A關于直線OB的對稱點A',連接A'D,則A'D=AD,

∴當A',D,G三點共線時,A'D+DG=A'G最短,此時AC+AD最短,

∵A(4,0),AG=CD=2,

∴A'(0,4),G(4+ , ),

設直線A'G的解析式為y=kx+b,則

,解得 ,

∴直線A'G的解析式為y=﹣ x+4,

解方程組 ,可得

∴D(2+ ,2+ ),

∵CD=2,且CD是線段OB上的一動線段,

∴C(2﹣ ,2﹣ ),

∴點C的橫坐標m=2﹣ ,

由A(4,0),C(2﹣ ,2﹣ )可得,AC= =3,

由A(4,0),D(2+ ,2+ )可得,AD= =3,

又∵CD=2,

∴△ACD的周長=CD+AC+AD=2+3+3=8,

故當m=2﹣ 時,△ACD的周長最小,這個最小值為8.


【解析】解:(1)∵y=x2﹣4x中,令y=0,則0=x2﹣4x, 解得x1=0,x2=4,
∴A(4,0),
解方程組 ,可得
,
∴B(5,5),
∴OB= =5
所以答案是:(4,0),5 ;
(1)根據(jù)y=x2﹣4x中,令y=0,則0=x2﹣4x,可求得A(4,0),解方程組 ,可得B(5,5),進而得出OB的長;(2)①根據(jù)C(m,m),F(xiàn)(m,m2﹣4m),可得CF=m﹣(m+ ),根據(jù)D(m+ ,m+ ),E(m+ ,(m+ 2﹣4(m+ )),可得DE=m+ ﹣[(m+ 2﹣4(m+ )],最后根據(jù)當四邊形CDEF是平行四邊形時,CF=DE,求得m的值即可;②先過點A作CD的平行線,過點D作AC的平行線,交于點G,則四邊形ACDG是平行四邊形,得出AC=DG,再作點A關于直線OB的對稱點A',連接A'D,則A'D=AD,根據(jù)當A',D,G三點共線時,A'D+DG=A'G最短,可得此時AC+AD最短,然后求得直線A'G的解析式為y=﹣ x+4,解方程組可得D(2+ ,2+ ),C(2﹣ ,2﹣ ),最后根據(jù)兩點間距離公式,求得△ACD的周長的最小值.
【考點精析】本題主要考查了拋物線與坐標軸的交點和平行四邊形的判定與性質的相關知識點,需要掌握一元二次方程的解是其對應的二次函數(shù)的圖像與x軸的交點坐標.因此一元二次方程中的b2-4ac,在二次函數(shù)中表示圖像與x軸是否有交點.當b2-4ac>0時,圖像與x軸有兩個交點;當b2-4ac=0時,圖像與x軸有一個交點;當b2-4ac<0時,圖像與x軸沒有交點.;若一直線過平行四邊形兩對角線的交點,則這條直線被一組對邊截下的線段以對角線的交點為中點,并且這兩條直線二等分此平行四邊形的面積才能正確解答此題.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在平面直角坐標系中,已知點A(1,0),B(1﹣a,0),C(1+a,0)(a>0),點P在以D(4,4)為圓心,1為半徑的圓上運動,且始終滿足∠BPC=90°,則a的最大值是

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】三張質地相同的卡片如圖所示,將卡片洗勻后背面朝上放置在桌面上,甲、乙兩人進行如下抽牌游戲:甲先抽一張卡片放回,乙再抽一張.
(1)求甲先抽一張卡片,抽到的卡片上數(shù)字為偶數(shù)的概率;
(2)用樹形(狀)圖或列表的方法表示甲、乙兩人游戲所有等可能的結果,并求他們抽到相同數(shù)字卡片的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在△ABC中,AB=AC=10cm,BC=12cm,點P從點C出發(fā),在線段CB上以每秒1cm的速度向點B勻速運動.與此同時,點M從點B出發(fā),在線段BA上以每秒lcm的速度向點A勻速運動.過點P作PN⊥BC,交AC點N,連接MP,MN.當點P到達BC中點時,點P與M同時停止運動.設運動時間為t秒(t>0).

(1)當t為何值時,PM⊥AB.
(2)設△PMN的面積為y(cm2),求出y與x之間的函致關系式.
(3)是否存在某一時刻t,使SPMN:SABC=1:5?若存在,求出t的值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知:關于x的一元二次方程x2﹣6x﹣m=0有兩個實數(shù)根.
(1)求m的取值范圍;
(2)如果m取符合條件的最小整數(shù),且一元二次方程x2﹣6x﹣m=0與x2+nx+1=0有一個相同的根,求常數(shù)n的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知二次函數(shù)y=x2+bx+c的圖象與直線y=x+1相交于點A(﹣1,m)和點B(n,5).
(1)求該二次函數(shù)的關系式;
(2)在給定的平面直角坐標系中,畫出這兩個函數(shù)的大致圖象;
(3)結合圖象直接寫出x2+bx+c>x+1時x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】解方程:
(1)(x+1)2=1
(2)x2﹣6x+4=0.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】下列說法正確的有( ) ① ﹣2的值在3和4之間;
②當a=1時,關于x的一元二次方程x2+2x﹣a=0有兩個相等的實數(shù)根;
③命題“對頂角相等”的逆命題是真命題;
④十邊形的內(nèi)角和為1440°;
⑤等邊三角形既是軸對稱圖形又是中心對稱圖形.
A.1個
B.2個
C.3個
D.4個

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】在平面直角坐標系中,已知拋物線經(jīng)過A(﹣4,0),B(0,﹣4),C(2,0)三點.

(1)求拋物線的解析式;
(2)若點M為第三象限內(nèi)拋物線上一動點,點M的橫坐標為m,△AMB的面積為S.求S關于m的函數(shù)關系式,并求出S的最大值.

查看答案和解析>>

同步練習冊答案