【題目】如圖,輪船在A(yíng)處觀(guān)測(cè)燈塔C位于北偏西70°方向上,輪船從A處以每小時(shí)20海里的速度沿南偏西50°方向勻速航行,1小時(shí)后到達(dá)碼頭B處,此時(shí),觀(guān)測(cè)燈塔C位于北偏西25°方向上,則燈塔C與碼頭B的距離是( 。
A. 10海里 B. 10 海里 C. 10海里 D. 20海里
【答案】C
【解析】解:作BD⊥AC于點(diǎn)D.
∵∠CBA=25°+50°=75°,
∴∠CAB=(90°﹣70°)+(90°﹣50°)=20°+40°=60°,
∠ABD=30°,
∴∠CBD=75°﹣30°=45°.
在直角△ABD中,BD=ABsin∠CAB=20×sin60°=20×=10.
在直角△BCD中,∠CBD=45°,
則BC=BD=10×=10(海里).
故選C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,小華和小麗兩人玩游戲,她們準(zhǔn)備了A、B兩個(gè)分別被平均分成三個(gè)、四個(gè)扇形的轉(zhuǎn)盤(pán).游戲規(guī)則:小華轉(zhuǎn)動(dòng)A盤(pán)、小麗轉(zhuǎn)動(dòng)B盤(pán).轉(zhuǎn)動(dòng)過(guò)程中,指針保持不動(dòng),如果指針恰好指在分割線(xiàn)上,則重轉(zhuǎn)一次,直到指針指向一個(gè)數(shù)字所在的區(qū)域?yàn)橹梗畠蓚(gè)轉(zhuǎn)盤(pán)停止后指針?biāo)竻^(qū)域內(nèi)的數(shù)字之和小于6,小華獲勝.指針?biāo)竻^(qū)域內(nèi)的數(shù)字之和大于6,小麗獲勝.
(1)用樹(shù)狀圖或列表法求小華、小麗獲勝的概率;
(2)這個(gè)游戲規(guī)則對(duì)雙方公平嗎?請(qǐng)判斷并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線(xiàn)y=﹣x2+bx+c與x軸交于A(yíng)、B(2,0)兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C(0,8).
(1)求該拋物線(xiàn)的解析式;
(2)若將該拋物線(xiàn)向下平移m個(gè)單位長(zhǎng)度,使平移后所得拋物線(xiàn)的頂點(diǎn)落在△ABC的內(nèi)部(不包括△ABC的邊界),求m的取值范圍;
(3)已知點(diǎn)Q在x軸上,點(diǎn)P在拋物線(xiàn)上,是否存在以A、C、P、Q為頂點(diǎn)的四邊形是平行四邊形?若存在,請(qǐng)求出點(diǎn)Q的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在同一直角坐標(biāo)系中,函數(shù)y=mx+m和y=﹣mx2+2x+2(m是常數(shù),且m≠0)的圖象可能是( )
A. B.
C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】綜合題
(1)不改變分式的值,使分式 的分子與分母的各項(xiàng)的系數(shù)是整數(shù).
(2)不改變分式的值,使分式 的分子與分母的最高次項(xiàng)的系數(shù)是正數(shù).
(3)當(dāng)x滿(mǎn)足什么條件時(shí),分式 的值,①等于0?②小于0?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖一,∠ACB=90°,點(diǎn)D在A(yíng)C上,DE⊥AB垂足為E,交BC的延長(zhǎng)線(xiàn)于F,DE=EB,EG=EB,
(1)求證:AG=DF;
(2)過(guò)點(diǎn)G作GH⊥AD,垂足為H,與DE的延長(zhǎng)線(xiàn)交于點(diǎn)M,如圖二,找出圖中與AB相等的線(xiàn)段,并證明.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)為原點(diǎn),點(diǎn)的坐標(biāo)為.如圖,正方形的頂點(diǎn)在軸的負(fù)半軸上,點(diǎn)在第二象限.現(xiàn)將正方形繞點(diǎn)順時(shí)針旋轉(zhuǎn)角得到正方形.
()如圖,若, ,求直線(xiàn)的函數(shù)表達(dá)式.
()若為銳角, ,當(dāng)取得最小值時(shí),求正方形的面積.
()當(dāng)正方形的頂點(diǎn)落在軸上時(shí),直線(xiàn)與直線(xiàn)相交于點(diǎn), 的其中兩邊之比能否為?若能,求出的坐標(biāo);若不能,試說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知三角形的三邊長(zhǎng)均為偶數(shù),其中兩邊長(zhǎng)分別為2和8,則第三邊長(zhǎng)為_______.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com