【題目】如圖,在平面直角坐標(biāo)系中,原點為O,點A0,3),B2,3),C2,-3),D0,-3).點P,Q是長方形ABCD邊上的兩個動點,BCx軸于點M.點P從點O出發(fā)以每秒1個單位長度沿OABM的路線做勻速運動,同時點Q也從點O出發(fā)以每秒2個單位長度沿ODCM的路線做勻速運動.當(dāng)點Q運動到點M時,兩動點均停止運動.設(shè)運動的時間為t秒,四邊形OPMQ的面積為S

1)當(dāng)t2時,求S的值;

2)若S5時,求t的取值范圍.

【答案】(1)S5(2)1.5t23t4

【解析】試題分析:設(shè)的面積為 的面積為則
當(dāng)t=2,P(0,2),Q(1,3),過點QQEx軸于點.根據(jù)三角形的面積公式分別求出 進(jìn)而得出的值;

設(shè)點運動的路程為則點運動的路程為分五種情況進(jìn)行討論:①; 針對每一種情況,首先確定出對應(yīng)范圍內(nèi)點 的位置,再根據(jù)三角形的面積公式求解即可.

試題解析:設(shè)的面積為 的面積為

(1)當(dāng)t=2,P(0,2),Q(1,3),過點QQEx軸于點.

(2)設(shè)點P運動的路程為t,則點Q運動的路程為2t.

①當(dāng)時,點P在線段OA上,點Q在線段OD上,

此時四邊形OPMQ不存在,不合題意,舍去.

②當(dāng)時,點P在線段OA上,點Q在線段DC,

S<5,

t+3<5,解得t<2.

此時1.5<t<2.

③當(dāng)時,點P在線段OA上,點Q在線段CM,

S<5,

8t<5,解得t>3.

④當(dāng)3<t<4時,點P在線段AB上,點Q在線段CM,

S<5

112t<5,解得t>3.

此時3<t<4.

⑤當(dāng)t=4時,點P是線段AB的中點,點QM重合,兩動點均停止運動,

此時四邊形OPMQ不存在,不合題意,舍去.

綜上所述,當(dāng)S<5時,1.5<t<23<t<4.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】若(2a﹣1)2+|2a+b|=0,且|c﹣1|=2,求c(a3﹣b)的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】分解因式:2m2﹣18=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】A﹣3,2)關(guān)于y軸對稱的點的坐標(biāo)為( 。

A. 3,﹣2 B. 32 C. ﹣3,﹣2 D. 2,﹣3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC中,CD是AB邊上的高,AC=8,ACD=30°,tanACB=,點P為CD上一動點,當(dāng)BP+CP最小時,DP=

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,O為坐標(biāo)原點.三角形ABC的邊BC在石軸上,點B的坐標(biāo)是(-5,0),點Ay軸的正半軸上,點Cx軸的正半軸上,它們的坐標(biāo)分別為A0m)、Cm10),且OAOC7,動點P從點B出發(fā),以每秒2個單位的速度,沿射線BO運動.設(shè)點P運動時間為t秒.

1)求A、C兩點的坐標(biāo);

2)連結(jié)PA,當(dāng)P沿射線BO勻速運動時,是否存在某一時刻,使三角形POA的面積是三角形ABC面積的?若存在,請求出t的值,并寫出P點坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示, AB=AC,AD=AE,∠BAC=∠DAE,∠1=25°,∠2=30°,則∠3=_____.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在等腰△ABC中,CH是底邊上的高線,點P是線段CH上不與端點重合的任意一點,連接AP交BC于點E,連接BP交AC于點F.
(1)證明:∠CAE=∠CBF;
(2)證明:AE=BF;
(3)以線段AE,BF和AB為邊構(gòu)成一個新的三角形ABG(點E與點F重合于點G),記△ABC和△ABG的面積分別為SABC和SABG , 如果存在點P,能使得SABC=SABG , 求∠ACB的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABC,ACB=90°, ABC=60°,BC=6.動點P從點A出發(fā)沿AB方向以每秒2個單位的速度運動,同時動點Q從點C出發(fā)沿射線BC方向以每秒2個單位的速度運動,當(dāng)點P到達(dá)點B,PQ同時停止運動,連結(jié)PQ、QA.設(shè)點P運動的時間為t.

1)當(dāng)CQ=2BP,t的值;

2)當(dāng)t為何值時QP=QA

3若線段PQ的中垂線與線段BC相交(包括線段的端點),t的取值范圍是 .(直接寫出答案)

查看答案和解析>>

同步練習(xí)冊答案