【題目】若(2a﹣1)2+|2a+b|=0,且|c﹣1|=2,求c(a3﹣b)的值.

【答案】解:∵(2a﹣1)2+|2a+b|=0
∵(2a﹣1)2≥0,|2a+b|≥0,
∴2a﹣1=0,2a+b=0∴a= ,b=﹣1
∵|c﹣1|=2∴c﹣1=±2∴c=3或﹣1
當(dāng)a= ,b=﹣1,c=3時(shí),c(a3﹣b)=3×[( 3﹣(﹣1)]= ,
當(dāng)a= ,b=﹣1,c=﹣1時(shí),c(a3﹣b)=(﹣1)×[( 3﹣(﹣1)]=﹣
【解析】根據(jù)非負(fù)數(shù)和絕對(duì)值的性質(zhì),可求出a、b的值,然后將代數(shù)式化簡(jiǎn)再代值計(jì)算.
【考點(diǎn)精析】根據(jù)題目的已知條件,利用絕對(duì)值的相關(guān)知識(shí)可以得到問(wèn)題的答案,需要掌握正數(shù)的絕對(duì)值是其本身,0的絕對(duì)值是0,負(fù)數(shù)的絕對(duì)值是它的相反數(shù);注意:絕對(duì)值的意義是數(shù)軸上表示某數(shù)的點(diǎn)離開(kāi)原點(diǎn)的距離.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如果代數(shù)式6y2-3y+2的值是8,那么代數(shù)式2y2-y+1的值等于 ( )

A. 2 B. ﹣2 C. 3 D. 4

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】計(jì)算:
(1)(﹣7)﹣(+10)+(﹣4)﹣(﹣5)+(﹣2)3
(2)(﹣1)2015﹣( + )×(﹣60)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】學(xué)校準(zhǔn)備從甲乙兩位選手中選擇一位選手代表學(xué)校參加所在地區(qū)的漢字聽(tīng)寫(xiě)大賽,學(xué)校對(duì)兩位選手從表達(dá)能力、閱讀理解、綜合素質(zhì)和漢字聽(tīng)寫(xiě)四個(gè)方面做了測(cè)試,他們各自的成績(jī)(百分制)如表:

選手

表達(dá)能力

閱讀理解

綜合素質(zhì)

漢字聽(tīng)寫(xiě)


85

78

85

73


73

80

82

83

1)由表中成績(jī)已算得甲的平均成績(jī)?yōu)?/span>80.25,請(qǐng)計(jì)算乙的平均成績(jī),從他們的這一成績(jī)看,應(yīng)選派誰(shuí);

2)如果表達(dá)能力、閱讀理解、綜合素質(zhì)和漢字聽(tīng)寫(xiě)分別賦予它們2、134的權(quán),請(qǐng)分別計(jì)算兩名選手的平均成績(jī),從他們的這一成績(jī)看,應(yīng)選派誰(shuí).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】一個(gè)角的補(bǔ)角比它的余角的3倍少20°,這個(gè)角的度數(shù)是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】把拋物線(xiàn)y=﹣x2向右平移1個(gè)單位,然后向上平移3個(gè)單位,則平移后拋物線(xiàn)的解析式為

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】x2 =25,x=________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,拋物線(xiàn)y=x2bx+c與x軸交于點(diǎn)A(8,0)、B(2,0)兩點(diǎn),與y軸交于點(diǎn)C.

(1)如圖1,求拋物線(xiàn)的解析式;

(2)如圖2,點(diǎn)P為第四象限拋物線(xiàn)上一點(diǎn),連接PB并延長(zhǎng)交y軸于點(diǎn)D,若點(diǎn)P的橫坐標(biāo)為t,CD長(zhǎng)為d,求d與t的函數(shù)關(guān)系式(并求出自變量t的取值范圍);

(3)如圖3,在(2)的條件下,連接AC,過(guò)點(diǎn)P作PHx軸,垂足為點(diǎn)H,延長(zhǎng)PH交AC于點(diǎn)E,連接DE,射線(xiàn)DP關(guān)于DE對(duì)稱(chēng)的射線(xiàn)DG交AC于點(diǎn)G,延長(zhǎng)DG交拋物線(xiàn)于點(diǎn)F,當(dāng)點(diǎn)G為AC中點(diǎn)時(shí),求點(diǎn)F的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,原點(diǎn)為O,點(diǎn)A0,3),B2,3),C2,-3),D0,-3).點(diǎn)P,Q是長(zhǎng)方形ABCD邊上的兩個(gè)動(dòng)點(diǎn),BCx軸于點(diǎn)M.點(diǎn)P從點(diǎn)O出發(fā)以每秒1個(gè)單位長(zhǎng)度沿OABM的路線(xiàn)做勻速運(yùn)動(dòng),同時(shí)點(diǎn)Q也從點(diǎn)O出發(fā)以每秒2個(gè)單位長(zhǎng)度沿ODCM的路線(xiàn)做勻速運(yùn)動(dòng).當(dāng)點(diǎn)Q運(yùn)動(dòng)到點(diǎn)M時(shí),兩動(dòng)點(diǎn)均停止運(yùn)動(dòng).設(shè)運(yùn)動(dòng)的時(shí)間為t秒,四邊形OPMQ的面積為S

1)當(dāng)t2時(shí),求S的值;

2)若S5時(shí),求t的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案