【題目】如圖,在平面直角坐標(biāo)系中,Rt△OAB的頂點(diǎn)A在x軸的正半軸上,頂點(diǎn)B的坐標(biāo)為(3, ),點(diǎn)C的坐標(biāo)為(,0),點(diǎn)P為斜邊OB上的一個動點(diǎn),則PA+PC的最小值為( )
A. B. C. D. 2
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形ABCD是矩形,把矩形沿AC折疊,點(diǎn)B落在點(diǎn)E處,AE與DC的交點(diǎn)為O,連接DE.
(1)求證:△ADE≌△CED;
(2)求證:DE∥AC.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,若將類似于a、b、c、d四個圖的圖形稱做平面圖,則其頂點(diǎn)數(shù)、邊數(shù)與區(qū)域數(shù)之間存在某種關(guān)系.觀察圖b和表中對應(yīng)的數(shù)值,探究計數(shù)的方法并作答.
(1)數(shù)一數(shù)每個圖中各有多少個頂點(diǎn)、多少條邊,這些邊圍出多少個區(qū)域并填表:
平面圖 | a | b | c | d |
頂點(diǎn)數(shù)(S) | 7 | |||
邊數(shù)(M) | 9 | |||
區(qū)域數(shù)(N) | 3 |
(2)根據(jù)表中數(shù)值,寫出平面圖的頂點(diǎn)數(shù)、邊數(shù)、區(qū)域數(shù)之間的一種關(guān)系為 ;
(3)如果一個平面圖有20個頂點(diǎn)和11個區(qū)域,那么利用(2)中得出的關(guān)系可知這個平面圖有 條邊.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如果三角形滿足一個角是另一個角的3倍,那么我們稱這個三角形為“智慧三角形”.下列各組數(shù)據(jù)中,能作為一個智慧三角形三邊長的一組是( )
A.1,2,3
B.1,1,
C.1,1,
D.1,2,
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了了解學(xué)生畢業(yè)后就讀普通高中或就讀中等職業(yè)技術(shù)學(xué)校的意向,某校對八、九年級部分學(xué)生進(jìn)行了一次調(diào)查,調(diào)查結(jié)果有三種情況:只愿意就讀普通高中;只愿意就讀中等職業(yè)技術(shù)學(xué)校;就讀普通高中或中等職業(yè)技術(shù)學(xué)校都愿意學(xué)校教務(wù)處將調(diào)查數(shù)據(jù)進(jìn)行了整理,并繪制了尚不完整的統(tǒng)計圖如下,請根據(jù)相關(guān)信息,解答下列問題:
本次活動一共調(diào)查的學(xué)生數(shù)為______名;
補(bǔ)全圖一,并求出圖二中A區(qū)域的圓心角的度數(shù);
若該校八、九年級學(xué)生共有2800名,請估計該校八、九年級學(xué)生只愿意就讀中等職業(yè)技術(shù)學(xué)校的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知正方形OABC的邊長為2,頂點(diǎn)A,C分別在x軸的負(fù)半軸和y軸的正半軸上,M是BC的中點(diǎn),P(0,m)是線段OC上一動點(diǎn)(C點(diǎn)除外),直線PM交AB的延長線于點(diǎn)D.
(1)求點(diǎn)D的坐標(biāo)(用含m的代數(shù)式表示);
(2)當(dāng)△APD是以AP為腰的等腰三角形時,求m的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x、y的方程組,其中﹣3≤a≤1,給出下列說法:①當(dāng)a=1時,方程組的解也是方程x+y=2﹣a的解;②當(dāng)a=﹣2時,x、y的值互為相反數(shù);③若x≤1,則1≤y≤4;④是方程組的解.其中說法錯誤的是( 。
A. ①②③④ B. ①②③ C. ②④ D. ②③
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,AC為對角線,AC=BC=5,AB=6,AE是△ABC的中線.
(1)用無刻度的直尺畫出△ABC的高CH(保留畫圖痕跡);
(2)求△ACE的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1表示同一時刻的韓國首爾時間和北京時間,兩地時差為整數(shù).
(1)設(shè)北京時間為x(時),首爾時間為y(時),就0≤x≤12,求y關(guān)于x的函數(shù)表達(dá)式,并填寫下表(同一時刻的兩地時間).
北京時間 | 7:30 | 11:15 | 2:50 |
首爾時間 | 8:30 | 12:15 | 3:50 |
(2)如圖2表示同一時刻的英國倫敦時間(夏時制)和北京時間,兩地時差為整數(shù).如果現(xiàn)在倫敦(夏時制)時間為7:30,那么此時韓國首爾時間是多少?
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com