【題目】如圖在平面直角坐標(biāo)系中,一次函數(shù)的圖象與軸交于點(diǎn),與軸交于點(diǎn),二次函數(shù)的圖象經(jīng)過(guò),兩點(diǎn),且與軸的負(fù)半軸交于點(diǎn),動(dòng)點(diǎn)在直線下方的二次函數(shù)圖象上.
(1)求二次函數(shù)的表達(dá)式;
(2)如圖1,連接,,設(shè)的面積為,求的最大值;
(3)如圖2,過(guò)點(diǎn)作于點(diǎn),是否存在點(diǎn),使得中的某個(gè)角恰好等于的2倍?若存在,直接寫(xiě)出點(diǎn)的橫坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
【答案】1);(2)S最大值為4;(3)存在,點(diǎn)D的橫坐標(biāo)為2或
【解析】
(1)根據(jù)題意得到B、C兩點(diǎn)的坐標(biāo),設(shè)拋物線的解析式為,將點(diǎn)C的坐標(biāo)代入求得m的值即可;
(2)過(guò)點(diǎn)D作DF⊥x軸,交BC與點(diǎn)F,設(shè),則,然后列出S與x的關(guān)系式,最后利用配方法求得其最大值即可;
(3)根據(jù)勾股定理的逆定理得到△ABC是以∠ACB為直角的直角三角形,取AB的中點(diǎn)E,EA=EC=EB=,過(guò)D作Y軸的垂線,垂足為R,交AC的延線于G,設(shè),則DR=x,,最后,分為∠DCM=2∠BAC和∠MDC=2∠BAC兩種情況列方程求解即可.
:(1)把x=0代入得y=-2,
∴C(0,-2).
把y=0代得x=4,
∴B(4,0),
設(shè)拋物線的解析式為,將C(0,-2)代入得:2m=-2,解得:m=-1,∴A(-1,0).
∴拋物線的解析式,即;
(2)如圖所示:過(guò)點(diǎn)D作DF⊥x軸,交BC與點(diǎn)F.
設(shè),則,,
∴,
∴當(dāng)x=2時(shí),S有最大值,最大值為4.
(3)如圖所示:過(guò)點(diǎn)D作DR⊥y垂足為R,DR交BC與點(diǎn)G.
∵A(-1,0),B(4,0),C(0,-2),
∴,AB=5,
∴AC2+BC2=AB2,
∴△ABC為直角三角形.
取AB的中點(diǎn)E,連接CE,則CE=BE,
∴∠OEC=2∠ABC.
∴,
當(dāng)∠MCD=2∠ABC時(shí),則tan∠CDR=tan∠ABC= ,
設(shè),則DR=x,,
∴,解得:x=0(舍去)或x=2.
∴點(diǎn)D的橫坐標(biāo)為2.
當(dāng)∠CDM=2∠ABC時(shí),設(shè)MD=3k,CM=4k,CD=5k.
∵tan∠MGD= ,
∴GM=6k,,
∴GC=MG-CM=2k,
∴,
∴ ,
∴,整理得:,
解得:x=0(舍去)或x=.
∴點(diǎn)D的橫坐標(biāo)為,
綜上所述,當(dāng)點(diǎn)D的橫坐標(biāo)為2或.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某次數(shù)學(xué)競(jìng)賽中有5道選擇題,每題1分,每道題在、、三個(gè)選項(xiàng)中,只有一個(gè)是正確的.下表是甲、乙、丙、丁四位同學(xué)每道題填涂的答案和這5道題的得分:
第一題 | 第二題 | 第三題 | 第四題 | 第五題 | 得分 | |
甲 | 4 | |||||
乙 | 3 | |||||
丙 | 2 | |||||
丁 |
(1)則甲同學(xué)錯(cuò)的是第 題;
(2)丁同學(xué)的得分是 ;
(3)如果有一個(gè)同學(xué)得了1分,他的答案可能是 (寫(xiě)出一種即可).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平行四邊形ABCD中,以AB為邊作等邊△ABE,點(diǎn)E在CD上,以BC為邊作等邊△BCF,點(diǎn)F在AE上,點(diǎn)G在BA延長(zhǎng)線上且FG=FB.
(1)若CD=6,AF=3,求△ABF的面積;
(2)求證:BE=AG+CE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在邊長(zhǎng)為1個(gè)單位長(zhǎng)度的小正方形組成的網(wǎng)格中,已知格點(diǎn)四邊形ABCD(頂點(diǎn)是網(wǎng)格線的交點(diǎn))和格點(diǎn)O.
(1)將四邊形ABCD先向左平移4個(gè)單位長(zhǎng)度,再向下平移6個(gè)單位長(zhǎng)度,得到四邊形A1B1C1D1,畫(huà)出平移后的四邊形A1B1C1D1,(點(diǎn)A,B,C,D的對(duì)應(yīng)點(diǎn)分別為點(diǎn)A1,B1,C1,D1);
(2)將四邊形ABCD繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)90°,得到四邊形A2B2C2D2,畫(huà)出旋轉(zhuǎn)后的四邊形A2B2C2D2(點(diǎn)A、B,C,D的對(duì)應(yīng)點(diǎn)分別為點(diǎn)A2,B2,C2,D2);
(3)填空:點(diǎn)C2到A1D1的距離為_______.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】拋物線y=ax2+bx+c交x軸于A(﹣1,0),B(3,0),交y軸的負(fù)半軸于C,頂點(diǎn)為D.下列結(jié)論:①2a+b=0;②2c<3b;③當(dāng)m≠1時(shí),a+b<am2+bm;④當(dāng)△ABD是等腰直角三角形時(shí),則a= ;⑤當(dāng)△ABC是等腰三角形時(shí),a的值有3個(gè).其中正確的有( )個(gè).
A. 5 B. 4 C. 3 D. 2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】點(diǎn),分別是的邊、延長(zhǎng)線上的點(diǎn),的延長(zhǎng)線交于.
(1)如圖1,,,求證:;
(2)如圖2,,,,,求;
(3)如圖3,若,,,求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】“食品安全”受到全社會(huì)的廣泛關(guān)注,育才中學(xué)對(duì)部分學(xué)生就食品安全知識(shí)的了解程度,采用隨機(jī)抽樣調(diào)查的方式,并根據(jù)收集到的信息進(jìn)行統(tǒng)計(jì),繪制了下面的兩幅尚不完整的統(tǒng)計(jì)圖,請(qǐng)你根據(jù)統(tǒng)計(jì)圖中所提供的信息解答下列問(wèn)題:
(1)接受問(wèn)卷調(diào)查的學(xué)生共有________人,扇形統(tǒng)計(jì)圖中“基本了解”部分所對(duì)應(yīng)扇形的圓心角為_(kāi)________;
(2)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)若對(duì)食品安全知識(shí)達(dá)到“了解”程度的學(xué)生中,男、女生的比例恰為,現(xiàn)從中隨機(jī)抽取人參加食品安全知識(shí)競(jìng)賽,則恰好抽到個(gè)男生和個(gè)女生的概率________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,A點(diǎn)的坐標(biāo)為(﹣1,5),B點(diǎn)的坐標(biāo)為(3,3),C點(diǎn)的坐標(biāo)為(5,3),D點(diǎn)的坐 標(biāo)為(3,﹣1),小明發(fā)現(xiàn):線段AB與線段CD存在一種特殊關(guān)系,即其中一條線段繞著某點(diǎn)旋轉(zhuǎn)一個(gè)角度可以得到另一條線段,你認(rèn)為這個(gè)旋轉(zhuǎn)中心的坐標(biāo)是_____________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了方便學(xué)生在上下學(xué)期間安全過(guò)馬路,南岸區(qū)政府決定在南開(kāi)(融僑)中學(xué)校門(mén)口修建人行天橋(如圖1),其平面圖如圖2所示,初三(8)班的學(xué)生小劉想利用所學(xué)知識(shí)測(cè)量天橋頂棚距地面的高度.天橋入口A點(diǎn)有一臺(tái)階AB=2m,其坡角為30°,在AB上方有兩段平層BC=DE=1.5m,且BC,DE與地面平行,BC,DE上方又緊接臺(tái)階CD,EF,其長(zhǎng)度相等且坡度均為i=4:3,頂棚距天橋距離FG=2m,且小劉從入口A點(diǎn)測(cè)得頂棚頂端G的仰角為37°,請(qǐng)根據(jù)以上數(shù)據(jù),幫小劉計(jì)算出頂端G點(diǎn)距地面高度為( 。m.(結(jié)果保留一位小數(shù),參考數(shù)據(jù):≈1.73,sin37°≈,cos37°≈,tan37°≈)
A. B. C. D.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com