【題目】在平行四邊形ABCD中,以AB為邊作等邊△ABE,點(diǎn)E在CD上,以BC為邊作等邊△BCF,點(diǎn)F在AE上,點(diǎn)G在BA延長(zhǎng)線上且FG=FB.
(1)若CD=6,AF=3,求△ABF的面積;
(2)求證:BE=AG+CE.
【答案】(1);(2)詳見(jiàn)解析.
【解析】
(1)根據(jù)△ABE為等邊三角形,就可以求出△ABE在邊AE上的高,因此就可以計(jì)算出S△ABF;
(2)首先作FH⊥AB于H,CJ⊥AE交AE的延長(zhǎng)線于J,再證明△ABF≌△EBC(SAS),同時(shí)證明△FHA≌△CJE(AAS),從而證明Rt△FGH≌Rt△CJF(HL),因此可以得到EF=AG,進(jìn)而證明BE=AE=AF+EF。
(1)解:∵△ABE是等邊三角形,
∴∠BAF=60°,AB=AE,
∵四邊形ABCD是平行四邊形,
∴AB=CD=6,
∴AE=AB=6,
∵AF=3,
∴AF=EF,
∴S△ABF=S△ABE=62=.
(2)作FH⊥AB于H,CJ⊥AE交AE的延長(zhǎng)線于J.
∵△ABE,△FBC都是等邊三角形,
∴BA=BE,BF=BC,∠ABE=∠FBC=60°,
∴∠ABF=∠EBC,
∴△ABF≌△EBC(SAS),
∴AF=EC,
∵AB∥CD,
∴∠CEJ=∠FAH,
∵∠FHA=∠J=90°,
∴△FHA≌△CJE(AAS),
∴FH=CJ,AH=EJ,
∵FB=FG=FC,FH=CJ,
∴Rt△FGH≌Rt△CJF(HL),
∴GH=FJ,∵AH=EJ,
∴EF=AG,
∵BE=AE=AF+EF,
∴BE=RC+AG.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】春節(jié)期間某商場(chǎng)搞促銷活動(dòng),方案是:在一個(gè)不透明的箱子里放4個(gè)完全相同的小球,球上分別標(biāo)“0元”、“20元”、“30元”、“50元”,顧客每消費(fèi)滿300元,就可從箱子里同時(shí)摸出兩個(gè)球,根據(jù)這兩個(gè)小球所標(biāo)金額之和可獲相應(yīng)價(jià)格的禮品;
(1)若某顧客在甲商商場(chǎng)消費(fèi)320元,至少可得價(jià)值______元的禮品,至多可得價(jià)值______元的禮品;
(2)請(qǐng)用畫樹(shù)狀圖或列表的方法,求該顧客去商場(chǎng)消費(fèi),獲得禮品的總價(jià)值不低于50元的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我們知道,(k+1)2=k2+2k+1,變形得:(k+1)2﹣k2=2k+1,對(duì)上面的等式,依次令k=1,2,3,…得:
第1個(gè)等式:22﹣12=2×1+1
第2個(gè)等式:32﹣22=2×2+1
第3個(gè)等式:42﹣32=2×3+1
(1)按規(guī)律,寫出第n個(gè)等式(用含n的等式表示):第n個(gè)等式 .
(2)記S1=1+2+3+…+n,將這n個(gè)等式兩邊分別相加,你能求出S1的公式嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】京杭大運(yùn)河是世界文化遺產(chǎn).綜合實(shí)踐活動(dòng)小組為了測(cè)出某段運(yùn)河的河寬(岸沿是平行的),如圖,在岸邊分別選定了點(diǎn)A、B和點(diǎn)C、D,先用卷尺量得AB=160m,CD=40m,再用測(cè)角儀測(cè)得∠CAB=30°,∠DBA=60°,求該段運(yùn)河的河寬(即CH的長(zhǎng)).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】A,B兩站相距330千米,甲、乙兩車都從A站出發(fā)開(kāi)往B站,甲車先出發(fā),且在途中C站?6分鐘,甲車出發(fā)半小時(shí)后,乙車從A站直達(dá)B站后停止,兩車之間的距離y(千米)與甲車行駛的時(shí)間x(小時(shí))之間的函數(shù)圖象如圖,則乙車恰好追上甲車時(shí)距離C站有______千米.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】1400多年前,我國(guó)隋代建造的石拱橋——趙州橋(如圖(1)),是我國(guó)古代人民勤勞與智慧的結(jié)晶.如圖(2)是它的簡(jiǎn)化示意圖,主橋拱是,拱高(的中點(diǎn)到弦的距離)為.
(1)在圖(2)中(點(diǎn)為圓心),用尺規(guī)作圖作出的中點(diǎn).(不要求寫作法,但保留作圖痕跡)
(2)若,求主橋拱的跨度的長(zhǎng).(結(jié)果精確到參考數(shù)據(jù):)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖在邊長(zhǎng)為1個(gè)單位長(zhǎng)度的小正方形組成的網(wǎng)格中,給出了格點(diǎn)四邊形 (頂點(diǎn)是網(wǎng)格線的交點(diǎn)).
(1)請(qǐng)畫出四邊形關(guān)于直線對(duì)稱的四邊形(點(diǎn)的對(duì)應(yīng)點(diǎn)分別為點(diǎn));
(2)若以點(diǎn)為位似中心,將四邊形放大到原來(lái)的2倍,請(qǐng)?jiān)谠摼W(wǎng)格中畫出放大后的四邊形(點(diǎn)的對(duì)應(yīng)點(diǎn)分別為點(diǎn));
(3)填空:__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖在平面直角坐標(biāo)系中,一次函數(shù)的圖象與軸交于點(diǎn),與軸交于點(diǎn),二次函數(shù)的圖象經(jīng)過(guò),兩點(diǎn),且與軸的負(fù)半軸交于點(diǎn),動(dòng)點(diǎn)在直線下方的二次函數(shù)圖象上.
(1)求二次函數(shù)的表達(dá)式;
(2)如圖1,連接,,設(shè)的面積為,求的最大值;
(3)如圖2,過(guò)點(diǎn)作于點(diǎn),是否存在點(diǎn),使得中的某個(gè)角恰好等于的2倍?若存在,直接寫出點(diǎn)的橫坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某市組織全民健身活動(dòng),有100名男選手參加由跑、跳、投等10個(gè)田徑項(xiàng)目組成的“十項(xiàng)全能”比賽,其中25名選手的一百米跑成績(jī)排名,跳遠(yuǎn)成績(jī)排名與10項(xiàng)總成績(jī)排名情況如圖所示.
甲、乙、丙表示三名男選手,下面有3個(gè)推斷:①甲的一百米跑成績(jī)排名比10項(xiàng)總成績(jī)排名靠前;②乙的一百米跑成績(jī)排名比10項(xiàng)總成績(jī)排名靠后;③丙的一百米跑成績(jī)排名可能比跳遠(yuǎn)成績(jī)排名靠前.其中合理的是( )
A. ①B. ②C. ①②D. ①③
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com