【題目】A,B兩站相距330千米,甲、乙兩車都從A站出發(fā)開往B站,甲車先出發(fā),且在途中C站?6分鐘,甲車出發(fā)半小時后,乙車從A站直達(dá)B站后停止,兩車之間的距離y(千米)與甲車行駛的時間x(小時)之間的函數(shù)圖象如圖,則乙車恰好追上甲車時距離C站有______千米.
【答案】200
【解析】
分析如圖,根據(jù)題意和圖象分析各關(guān)鍵點(diǎn)(即圖象拐點(diǎn))的坐標(biāo)求解即可.
解:∵甲車從A地開出0.5h后行駛了80km.
∴甲車的速度為,=200km/h.
又由圖可知乙車從A站直達(dá)B站后停止共用了1.6﹣0.5=1.1h.
∴乙車的速度為,=300km/h.
∴乙車從A地出發(fā)第一次與甲車相遇用了=0.8h.
此時甲乙兩車距離A地均為300×0.8=240km.
又由圖得,甲車從A地到達(dá)C地用了0.3﹣=0.3﹣0.1=0.2h.
∴A地到C地的距離為,200×0.2=40km.
∴則乙車恰好追上甲車時距離C站有 240﹣40=200km.
故答案為200km.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,拋物線y=x2﹣x﹣3,與x軸交于A和B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左側(cè)),與y軸交于點(diǎn)C,過點(diǎn)A的直線與拋物線在第一象限的交點(diǎn)M的橫坐標(biāo)為,直線AM與y軸交于點(diǎn)D,連接BC、AC.
(1)求直線AD和BC的解折式;
(2)如圖2,E為直線BC下方的拋物線上一點(diǎn),當(dāng)△BCE的面積最大時,一線段FG=4(點(diǎn)F在G的左側(cè))在直線AM上移動,順次連接B、E、F、G四點(diǎn)構(gòu)成四邊形BEFG,請求出當(dāng)四邊形BEFG的周長最小時點(diǎn)F的坐標(biāo);
(3)如圖3,將△DAC繞點(diǎn)D逆時針旋轉(zhuǎn)角度α(0°<α<180°),記旋轉(zhuǎn)中的三角形為△DA′C′,若直線A′C′分別與直線BC、y軸交于M、N,當(dāng)△CMN是等腰三角形時,請直接寫出CM的長度.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,方格紙中每個小正方形的邊長都是1個單位長度,在平面直角坐標(biāo)系中的位置如圖所示.
(1)直接寫出關(guān)于原點(diǎn)的中心對稱圖形各頂點(diǎn)坐標(biāo):________________________;
(2)將繞B點(diǎn)逆時針旋轉(zhuǎn),畫出旋轉(zhuǎn)后圖形.求在旋轉(zhuǎn)過程中所掃過的圖形的面積和點(diǎn)經(jīng)過的路徑長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,給出如下定義:已知兩個函數(shù),如果對于任意的自變量,這兩個函數(shù)對應(yīng)的函數(shù)值記為, 恒有點(diǎn)和點(diǎn)關(guān)于點(diǎn)成中心對稱(此三個點(diǎn)可以重合),由于對稱中心都在直線上,所以稱這兩個函數(shù)為關(guān)于直線的“相依函數(shù)”。例如: 和為關(guān)于直線的 “相依函數(shù)”.
(1)已知點(diǎn)是直線上一點(diǎn),請求出點(diǎn)關(guān)于點(diǎn)成中心對稱的點(diǎn)的坐標(biāo):
(2)若直線和它關(guān)于直線的“相依函數(shù)”的圖象與軸圍成的三角形的面積為,求的值;
(3)若二次函數(shù)和為關(guān)于直線的“相依函數(shù)”.
①請求出的值;
②已知點(diǎn)、點(diǎn)連接直接寫出和兩條拋物線與線段有目只有兩個交占時對應(yīng)的的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合與實踐
背景閱讀 早在三千多年前,我國周朝數(shù)學(xué)家商高就提出:將一根直尺折成一個直角,如果勾等于三,股等于四,那么弦就等于五,即“勾三、股四、弦五”.它被記載于我國古代著名數(shù)學(xué)著作《周髀算經(jīng)》中,為了方便,在本題中,我們把三邊的比為3:4:5的三角形稱為(3,4,5)型三角形,例如:三邊長分別為9,12,15或3,4,5的三角形就是(3,4,5)型三角形,用矩形紙片按下面的操作方法可以折出這種類型的三角形.
實踐操作 如圖1,在矩形紙片ABCD中,AD=8cm,AB=12cm.
第一步:如圖2,將圖1中的矩形紙片ABCD沿過點(diǎn)A的直線折疊,使點(diǎn)D落在AB上的點(diǎn)E處,折痕為AF,再沿EF折疊,然后把紙片展平.
第二步:如圖3,將圖2中的矩形紙片再次折疊,使點(diǎn)D與點(diǎn)F重合,折痕為GH,然后展平,隱去AF.
第三步:如圖4,將圖3中的矩形紙片沿AH折疊,得到△AD′H,再沿AD′折疊,折痕為AM,AM與折痕EF交于點(diǎn)N,然后展平.
問題解決
(1)請在圖2中證明四邊形AEFD是正方形.
(2)請在圖4中判斷NF與ND′的數(shù)量關(guān)系,并加以證明;
(3)請在圖4中證明△AEN(3,4,5)型三角形;
探索發(fā)現(xiàn)
(4)在不添加字母的情況下,圖4中還有哪些三角形是(3,4,5)型三角形?請找出并直接寫出它們的名稱.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平行四邊形ABCD中,以AB為邊作等邊△ABE,點(diǎn)E在CD上,以BC為邊作等邊△BCF,點(diǎn)F在AE上,點(diǎn)G在BA延長線上且FG=FB.
(1)若CD=6,AF=3,求△ABF的面積;
(2)求證:BE=AG+CE.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場銷售一種商品,該商品的進(jìn)價為每件10元,物價部門限定,每件該商品的銷售利潤不得超過,銷售過程中發(fā)現(xiàn)月銷售量 (件)與銷售單價 (元)之間的關(guān)系滿足:當(dāng)時,月銷售量為640件;當(dāng)時,銷售單價每增加1元,月銷售量就減少20件.
(1)請直接寫出與之間的函數(shù)關(guān)系式;
(2)設(shè)該商品的月利潤為(元),求與之間的函數(shù)關(guān)系式,并指出當(dāng)該商品的銷售單價定為多少元時,月利潤最大,最大月利潤是多少.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】拋物線y=ax2+bx+c交x軸于A(﹣1,0),B(3,0),交y軸的負(fù)半軸于C,頂點(diǎn)為D.下列結(jié)論:①2a+b=0;②2c<3b;③當(dāng)m≠1時,a+b<am2+bm;④當(dāng)△ABD是等腰直角三角形時,則a= ;⑤當(dāng)△ABC是等腰三角形時,a的值有3個.其中正確的有( 。﹤.
A. 5 B. 4 C. 3 D. 2
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,△ABC是等腰直角三角形,∠BAC= 90°,AB=AC,四邊形ADEF是正方形,點(diǎn)B、C分別在邊AD、AF上,此時BD=CF,BD⊥CF成立.
(1)當(dāng)△ABC繞點(diǎn)A逆時針旋轉(zhuǎn)θ(0°<θ<90°)時,如圖2,BD=CF成立嗎?若成立,請證明;若不成立,請說明理由.
(2)當(dāng)△ABC繞點(diǎn)A逆時針旋轉(zhuǎn)45°時,如圖3,延長DB交CF于點(diǎn)H.
①求證:BD⊥CF;
②當(dāng)AB=2,AD=3時,求線段DH的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com