【題目】△ABC中,AB=AC=4,BC=5,點(diǎn)D是邊AB的中點(diǎn),點(diǎn)E是邊AC的中點(diǎn),點(diǎn)P是邊BC上的動點(diǎn),∠DPE=∠C,則BP= .
【答案】1或4
【解析】解:∵AB=AC=4,點(diǎn)D是邊AB的中點(diǎn),點(diǎn)E是邊AC的中點(diǎn),
∴BD=2,CE=2,∠B=∠C,
∵∠DPE=∠C,
∴∠BPD=180°﹣∠B﹣∠DPE,∠CEP=180°﹣∠EPC﹣∠C,
∴∠DPB=∠PEC,
∴△BPD∽△CPE,
∴ ,即 ,
∴PB=1或4,
所以答案是:1或4.
【考點(diǎn)精析】通過靈活運(yùn)用等腰三角形的性質(zhì)和相似三角形的判定與性質(zhì),掌握等腰三角形的兩個(gè)底角相等(簡稱:等邊對等角);相似三角形的一切對應(yīng)線段(對應(yīng)高、對應(yīng)中線、對應(yīng)角平分線、外接圓半徑、內(nèi)切圓半徑等)的比等于相似比;相似三角形周長的比等于相似比;相似三角形面積的比等于相似比的平方即可以解答此題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】閱讀與理解:
三角形中一邊中點(diǎn)與這邊所對頂點(diǎn)的線段稱為三角形的中線。
三角形的中線的性質(zhì):三角形的中線等分三角形的面積。
即如圖1,AD是中BC邊上的中線,則,
理由:,,
即:等底同高的三角形面積相等。
操作與探索:
在如圖2至圖4中,的面積為a。
(1)如圖2,延長的邊BC到點(diǎn)D,使CD=BC,連接DA,若的面積為,則(用含a的代數(shù)式表示);
(2)如圖3,延長的邊BC到點(diǎn)D,延長邊CA到點(diǎn)E,使CD=BC,AE=CA,連接DE,若的面積為,則_________(用含a的代數(shù)式表示);
(3)在圖3的基礎(chǔ)上延長AB到點(diǎn)F,使BF=AB,連接FD,F(xiàn)E,得到(如圖4),若陰影部分的面積為,則________(用含a的代數(shù)式表示)
(4)拓展與應(yīng)用:
如圖5,已知四邊形ABCD的面積是a;E,F,G,H分別是AB,BC,CD的中點(diǎn),求圖中陰影部分的面積?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AC=BC,AB=2,CD是邊AB的高線,動點(diǎn)E從點(diǎn)A出發(fā),以每秒1個(gè)單位的速度沿射線AC運(yùn)動;同時(shí),動點(diǎn)F從點(diǎn)C出發(fā),以相同的速度沿射線CB運(yùn)動.設(shè)E的運(yùn)動時(shí)間為t(s)(t>0).
(1)AE= (用含t的代數(shù)式表示),∠BCD的大小是 度;
(2)點(diǎn)E在邊AC上運(yùn)動時(shí),求證:△ADE≌△CDF;
(3)點(diǎn)E在邊AC上運(yùn)動時(shí),求∠EDF的度數(shù);
(4)連結(jié)BE,當(dāng)CE=AD時(shí),直接寫出t的值和此時(shí)BE對應(yīng)的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了推動“龍江經(jīng)濟(jì)帶”建設(shè),我省某蔬菜企業(yè)決定通過加大種植面積、增加種植種類,促進(jìn)經(jīng)濟(jì)發(fā)展,2017年春,預(yù)計(jì)種植西紅柿、馬鈴薯、青椒共100公頃(三種蔬菜的種植面積均為整數(shù)),青椒的種植面積是西紅柿種植面積的2倍,經(jīng)預(yù)算,種植西紅柿的利潤可達(dá)1萬元/公頃,青椒1.5萬元/公頃,馬鈴薯2萬元/公頃,設(shè)種植西紅柿x公頃,總利潤為y萬元.
(1)求總利潤y(萬元)與種植西紅柿的面積x(公頃)之間的關(guān)系式.
(2)若預(yù)計(jì)總利潤不低于180萬元,西紅柿的種植面積不低于8公頃,有多少種種植方案?
(3)在(2)的前提下,該企業(yè)決定投資不超過獲得最大利潤的在冬季同時(shí)建造A、B兩種類型的溫室大棚,開辟新的經(jīng)濟(jì)增長點(diǎn),經(jīng)測算,投資A種類型的大棚5萬元/個(gè),B種類型的大棚8萬元/個(gè),請直接寫出有哪幾種建造方案?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“轉(zhuǎn)化”是數(shù)學(xué)中的一種重要思想,即把陌生的問題轉(zhuǎn)化成熟悉的問題,把復(fù)雜的問題轉(zhuǎn)化成簡單的問題,把抽象的問題轉(zhuǎn)化為具體的問題.
(1)請你根據(jù)已經(jīng)學(xué)過的知識求出下面星形圖(1)中∠A+∠B+∠C+∠D+∠E的度數(shù);
(2)若對圖(1)中星形截去一個(gè)角,如圖(2),請你求出∠A+∠B+∠C+∠D+∠E+∠F的度數(shù);
(3)若再對圖(2)中的角進(jìn)一步截去,你能由題(2)中所得的方法或規(guī)律,猜想圖3中的∠A+∠B+∠C+∠D+∠E+∠F+∠G+∠H+∠M+∠N的度數(shù)嗎?只要寫出結(jié)論,不需要寫出解題過程)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1是一個(gè)長為4a、寬為b的長方形,沿圖中虛線用剪刀平均分成四塊小長方形,然后用四塊小長方形拼成的一個(gè)“回形”正方形(如圖2).
(1)圖2中的陰影部分的面積為 ;
(2)觀察圖2請你寫出(a+b)2、(a﹣b)2、ab之間的等量關(guān)系是 ;
(3)根據(jù)(2)中的結(jié)論,若x+y=7,xy=,則x﹣y= ;
(4)實(shí)際上通過計(jì)算圖形的面積可以探求相應(yīng)的等式.根據(jù)圖3,寫出一個(gè)因式分解的等式 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于m的方程(m-16)=7的解也是關(guān)于x的方程2(x-3)-n=52的解.
(1)求m,n的值;
(2)已知∠AOB=m°,在平面內(nèi)畫一條射線OP,恰好使得∠AOP=n∠BOP,求∠BOP.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】計(jì)算:(1)∣—6∣+(—3.14)0—()-2+(—2)3 (2)(-a)3a2+(2a4)2÷a3.
(3) (4)(a-2b)(a+b)-3a(a+b)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在等邊△ABC外側(cè)作直線AP,點(diǎn)B關(guān)于直線AP的對稱點(diǎn)為D,連結(jié)BD,CD,其中CD交直線AP與點(diǎn)E.
(1)如圖1,若∠PAB=30°,則∠ACE= ;
(2)如圖2,若60°<∠PAB<120°,請補(bǔ)全圖形,判斷由線段AB,CE,ED可以構(gòu)成一個(gè)含有多少度角的三角形,并說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com