【題目】某銷售公司為了解員工的月工資水平,從1000位員工中隨機抽取100位員工進行調(diào)查,得到如下的頻率分布直方圖:
(1)試由此圖估計該公司員工的月平均工資;
(2)該公司工資發(fā)放是以員工的營銷水平為重要依據(jù)來確定的,一般認為,工資低于4500元的員工屬于學徒階段,沒有營銷經(jīng)驗,若進行營銷將會失。桓哂4500元的員工是具備營銷成熟員工,進行營銷將會成功.現(xiàn)將該樣本按照“學徒階段工資”、“成熟員工工資”分為兩層,進行分層抽樣,從中抽出5人,在這5人中任選2人進行營銷活動.活動中,每位員工若營銷成功,將為公司贏得3萬元,否則公司將損失1萬元,試問在此次比賽中公司收入多少萬元的可能性最大?
【答案】
(1)解:(1)由頻率分布直方圖估計該公司員工的月平均工資為:
0.01×10×20+0.01×10×30+0.02×10×40+0.03×10×50+0.02×10×60+0.01×10×70=4700(元).
(2)抽取比為: ,
從工資在[1500,4500)區(qū)間內(nèi)抽100×(0.1+0.1+0.2)× =2人,設這兩位員工分別為1,2,
從工資在[4500,7500]區(qū)間內(nèi)抽100×(0.3+0.2+0.1)× =3人,設這3人員工分別為A,B,C,
從中任選2人,共有以下10種不同的等可能結果:
(1,2),(1,A),(1,B),(1,C),(2,A),(2,B),(2,C),(A,B),(A,C),(B,C),
兩人營銷都成功,公司收入6萬元,有以下3種不同的等可能結果:(A,B),(A,C),(B,C),概率為 ,
兩人中有一人營銷都成功,公司改入2萬元,有6種結果:
(1,A),(1,B),(1,C),(2,A),(2,B),(2,C),概率為 ,
兩人營銷都失敗,公司損失2萬元,有1種結果:(1,2),概率為 ,
∵ ,∴收入2萬元的可能性最大.
【解析】(1)由頻率分布直方圖能估計該公司員工的月平均工資.(2)抽取比為: ,從工資在[1500,4500)區(qū)間內(nèi)抽2人,設這兩位員工分別為1,2,從工資在[4500,7500]區(qū)間內(nèi)抽3人,設這3人員工分別為A,B,C,從中任選2人,利用列舉法能求出收入2萬元的可能性最大.
科目:初中數(shù)學 來源: 題型:
【題目】定義[x]表示不超過實數(shù)x的最大整數(shù),如[1.8]=1,[﹣1.4]=﹣2,[﹣3]=﹣3.函數(shù)y=[x]的圖象如圖所示,則方程[x]= x2的解為( )#N.
A.0或
B.0或2
C.1或
D.
或﹣
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知拋物線的對稱軸是y軸,且點(2,2),(1, )在拋物線上,點P是拋物線上不與頂點N重合的一動點,過P作PA⊥x軸于A,PC⊥y軸于C,延長PC交拋物線于E,設M是O關于拋物線頂點N的對稱點,D是C點關于N的對稱點.
(1)求拋物線的解析式及頂點N的坐標;
(2)求證:四邊形PMDA是平行四邊形;
(3)求證:△DPE∽△PAM,并求出當它們的相似比為 時的點P的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】李老師為了解學生完成數(shù)學課前預習的具體情況,對部分學生進行了跟蹤調(diào)查,并將調(diào)查結果分為四類,A:很好;B:較好;C:一般;D:較差.繪制成以下兩幅不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖解答下列問題:
(1)李老師一共調(diào)查了多少名同學?
(2)C類女生有名,D類男生有名,將下面條形統(tǒng)計圖補充完整;
(3)為了共同進步,李老師想從被調(diào)查的A類和D類學生中各隨機選取一位同學進行
“一幫一”互助學習,請用列表法或畫樹形圖的方法求出所選兩位同學恰好是一位男同學和一位女同學的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】將函數(shù)y=f(x)的圖象向左平移φ(0<φ<π)個單位后得到函數(shù)g(x)=sin2x的圖象,當x1 , x2滿足時,|f(x1)﹣g(x2)|=2, ,則φ的值為( )
A.
B.
C.
D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】我國古代數(shù)學著作《九章算術》有如下問題:“今有器中米,不知其數(shù),前人取半,中人三分取一,后人四分取一,余米一斗五升.問,米幾何?”如圖是解決該問題的程序框圖,執(zhí)行該程序框圖,若輸出的S=1.5(單位:升),則輸入k的值為( )
A.4.5
B.6
C.7.5
D.9
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四棱錐P﹣ABCD中,PA⊥底面ABCD,底面ABCD是直角梯形,∠ADC=90°,AD∥BC,AB⊥AC,AB=AC= ,點E在AD上,且AE=2ED.
(Ⅰ)已知點F在BC上,且CF=2FB,求證:平面PEF⊥平面PAC;
(Ⅱ)若△PBC的面積是梯形ABCD面積的 ,求點E到平面PBC的距離.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在平面直角坐標系xOy中,對于點P(x,y),我們把點P′(﹣y+1,x+1)叫做點P的伴隨點,已知點A1的伴隨點為A2,點A2的伴隨點為A3,點A3的伴隨點為A4,…,這樣依次得到點A1,A2,A3,…,An.
(1)若點A1的坐標為(2,1),則點A4的坐標為_____;
(2)若點A1的坐標為(a,b),對于任意的正整數(shù)n,點An均在x軸上方,則a,b應滿足的條件為_____.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com