(2011•重慶)有四張正面分別標(biāo)有數(shù)學(xué)﹣3,0,1,5的不透明卡片,它們除數(shù)字不同外其余全部相同.現(xiàn)將它們背面朝上,洗勻后從中任取一張,將該卡片上的數(shù)學(xué)記為
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,函數(shù)y1=-x+4的圖象與函數(shù)y2=(x>0)的圖象交于 A(a,1)、B(1,b)兩點(diǎn).
(1)求a,b及y2的函數(shù)關(guān)系式;
(2)觀察圖象,當(dāng)x>0時(shí),比較y1與y2大小.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,將邊長(zhǎng)為4的等邊三角形AOB放置于平面直角坐標(biāo)系xoy中,F(xiàn)是AB邊上的動(dòng)點(diǎn)(不與端點(diǎn)A、B重合),過(guò)點(diǎn)F的反比例函數(shù)(k>0,x>0)與OA邊交于點(diǎn)E,過(guò)點(diǎn)F作FC⊥x軸于點(diǎn)C,連結(jié)EF、OF.
(1)若S△OCF=,求反比例函數(shù)的解析式;
(2)在(1)的條件下,試判斷以點(diǎn)E為圓心,EA長(zhǎng)為半徑的圓與y軸的位置關(guān)系,并說(shuō)明理由;
(3)AB邊上是否存在點(diǎn)F,使得EF⊥AE?若存在,請(qǐng)求出BF:FA的值;若不存在,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,已知正比例函數(shù)y=2x和反比例函數(shù)的圖象交于點(diǎn)A(m,﹣2).
(1)求反比例函數(shù)的解析式;
(2)觀察圖象,直接寫出正比例函數(shù)值大于反比例函數(shù)值時(shí)自變量x的取值范圍;
(3)若雙曲線上點(diǎn)C(2,n)沿OA方向平移個(gè)單位長(zhǎng)度得到點(diǎn)B,判斷四邊形OABC的形狀并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
如圖所示的圓柱體中底面圓的半徑是,高為2,若一只小蟲(chóng)從A點(diǎn)出發(fā)沿著圓柱體的側(cè)面爬行到C點(diǎn),則小蟲(chóng)爬行的最短路程是 _________ .(結(jié)果保留根號(hào))
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:單選題
把一條彎曲的公路改成直道,可以縮短路程.用幾何知識(shí)解釋其道理正確的是( )
A.兩點(diǎn)確定一條直線 | B.垂線段最短 |
C.兩點(diǎn)之間線段最短 | D.三角形兩邊之和大于第三邊 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:單選題
下列命題中,屬于真命題的是
A.面積相等的三角形是全等三角形 |
B.同位角相等 |
C.若|a|=|b|,則a=b |
D.如果直線l1∥l2,直線l2∥l3,那么l1∥l3 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
如圖,矩形OABC的頂點(diǎn)A,C分別在x軸和y軸上,點(diǎn)B的坐標(biāo)為(2,3)。雙曲線的圖像經(jīng)過(guò)BC的中點(diǎn)D,且與AB交于點(diǎn)E,連接DE。
(1)求k的值及點(diǎn)E的坐標(biāo);
(2)若點(diǎn)F是邊上一點(diǎn),且△FBC∽△DEB,求直線FB的解析式
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
如圖,三棱錐中,,,
一只螞蟻從點(diǎn)沿側(cè)面先爬到棱上的點(diǎn)處,再爬到棱上的點(diǎn)處,然后回到點(diǎn)
,則螞蟻爬行的最短路程是 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com