如圖,將邊長(zhǎng)為4的等邊三角形AOB放置于平面直角坐標(biāo)系xoy中,F(xiàn)是AB邊上的動(dòng)點(diǎn)(不與端點(diǎn)A、B重合),過(guò)點(diǎn)F的反比例函數(shù)(k>0,x>0)與OA邊交于點(diǎn)E,過(guò)點(diǎn)F作FC⊥x軸于點(diǎn)C,連結(jié)EF、OF.

(1)若SOCF=,求反比例函數(shù)的解析式;
(2)在(1)的條件下,試判斷以點(diǎn)E為圓心,EA長(zhǎng)為半徑的圓與y軸的位置關(guān)系,并說(shuō)明理由;
(3)AB邊上是否存在點(diǎn)F,使得EF⊥AE?若存在,請(qǐng)求出BF:FA的值;若不存在,請(qǐng)說(shuō)明理由.

解:(1)設(shè)F(x,y),(x>0,y>0),則OC=x,CF=y,
∴SOCF=xy=,即xy=2!鄈=2。
∴反比例函數(shù)解析式為(x>0)。
(2)該圓與y軸相離,理由如下:
過(guò)點(diǎn)E作EH⊥x軸,垂足為H,過(guò)點(diǎn)E作EG⊥y軸,垂足為G,

在△AOB中,OA=AB=4,∠AOB=∠ABO=∠A=60°,
設(shè)OH=m,則,
∴EH=m,OE=2m!郋坐標(biāo)為(m,m),
∵E在反比例圖象上,∴。
∴m1=,m2=-(舍去)。
∴OE=2,EA=4﹣2,EG=。
∵4﹣2,∴EA<EG。
∴以E為圓心,EA垂為半徑的圓與y軸相離。
(3)存在。
假設(shè)存在點(diǎn)F,使AE⊥FE,
過(guò)E點(diǎn)作EH⊥OB于點(diǎn)H,設(shè)BF=x.

∵△AOB是等邊三角形,
∴AB=OA=OB=4,∠AOB=∠ABO=∠A=60°。
∴BC=FB•cos∠FBC=x,F(xiàn)C=FB•sin∠FBC=x,
∴AF=4﹣x,OC=OB﹣BC=4﹣x。
∵AE⊥FE,∴AE=AF•cosA=2﹣x。
∴OE=OA﹣AE=x+2。
∴OH=OE•cos∠AOB=x+1,EH=OE•sin∠AOB=x+。
∴E(x+1, x+),F(xiàn)(4﹣x,x)。
∵E、F都在雙曲線的圖象上,
∴(x+1)(x+)=(4﹣x)•x。解得:x1=4,x2=。
當(dāng)BF=4時(shí),AF=0,BF:AF不存在,舍去。
當(dāng)BF=時(shí),AF=,BF:AF=1:4

解析試題分析:(1)設(shè)F(x,y),得到OC=x與CF=y,表示出三角形OCF的面積,求出xy的值,即為k的值,進(jìn)而確定出反比例解析式。
(2)過(guò)E作EH垂直于x軸,EG垂直于y軸,設(shè)OH為m,利用等邊三角形的性質(zhì)及銳角三角函數(shù)定義表示出EH與OE,進(jìn)而表示出E的坐標(biāo),代入反比例解析式中求出m的值,確定出EG,OE,EH的長(zhǎng),根據(jù)EA與EG的大小關(guān)系即可對(duì)于圓E與y軸的位置關(guān)系作出判斷。
(3)過(guò)E作EH垂直于x軸,設(shè)FB=x,利用等邊三角形的性質(zhì)及銳角三角函數(shù)定義表示出FC與BC,進(jìn)而表示出AF與OC,表示出AE與OE的長(zhǎng),得出OE與EH的長(zhǎng),表示出E與F坐標(biāo),根據(jù)E與F都在反比例圖象上,得到橫縱坐標(biāo)乘積相等列出方程,求出方程的解得到x的值,即可求出BF與FA的比值!

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

已知反比例函數(shù) (m為常數(shù))的圖象經(jīng)過(guò)點(diǎn)A(-1,6).
(1)求m的值;
(2)如圖,過(guò)點(diǎn)A作直線AC與函數(shù)的圖象交于點(diǎn)B,與x軸交于點(diǎn)C,且AB=2BC,求點(diǎn)C的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,科技小組準(zhǔn)備用材料圍建一個(gè)面積為60m2的矩形科技園ABCD,其中一邊AB靠墻,墻長(zhǎng)為12m。設(shè)AD的長(zhǎng)為xm,DC的長(zhǎng)為ym。

(1)求y與x之間的函數(shù)關(guān)系式;
(2)若圍成矩形科技園ABCD的三邊材料總長(zhǎng)不超過(guò)26m,材料AD和DC的長(zhǎng)都是整米數(shù),求出滿足條件的所有圍建方案。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,直線與雙曲線交于C、D兩點(diǎn),與x軸交于點(diǎn)A.

(1)求n的取值范圍和點(diǎn)A的坐標(biāo);
(2)過(guò)點(diǎn)C作CB⊥y軸,垂足為B,若S ABC=4,求雙曲線的解析式;
(3)在(1)、(2)的條件下,若AB=,求點(diǎn)C和點(diǎn)D的坐標(biāo)并根據(jù)圖象直接寫(xiě)出反比例函數(shù)的值小于一次函數(shù)的值時(shí),自變量x的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

工匠制作某種金屬工具要進(jìn)行材料煅燒和鍛造兩個(gè)工序,即需要將材料燒到800℃,然后停止煅燒進(jìn)行鍛造操作,經(jīng)過(guò)8min時(shí),材料溫度降為600℃.煅燒時(shí)溫度y(℃)與時(shí)間x(min)成一次函數(shù)關(guān)系;鍛造時(shí),溫度y(℃)與時(shí)間x(min)成反比例函數(shù)關(guān)系(如圖).已知該材料初始溫度是32℃.

(1)分別求出材料煅燒和鍛造時(shí)y與x的函數(shù)關(guān)系式,并且寫(xiě)出自變量x的取值范圍;
(2)根據(jù)工藝要求,當(dāng)材料溫度低于480℃時(shí),須停止操作.那么鍛造的操作時(shí)間有多長(zhǎng)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

如圖,正比例函數(shù)的圖象與反比例函數(shù)(k≠0)在第一象限的圖象交于A點(diǎn),過(guò)A點(diǎn)作x軸的垂線,垂足為M,已知△OAM的面積為1.
(1)求反比例函數(shù)的解析式;
(2)如果B為反比例函數(shù)在第一象限圖象上的點(diǎn)(點(diǎn)B與點(diǎn)A不重合),且B點(diǎn)的橫坐標(biāo)為1,在x軸上找一點(diǎn)P,使PA+PB最。驪點(diǎn)坐標(biāo)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

通過(guò)對(duì)蘇科版八(下)教材一道習(xí)題的探索研究,我們知道:一次函數(shù)y=x﹣1的圖象可以由正比例函數(shù)y=x的圖象向右平移1個(gè)單位長(zhǎng)度得到類似的,函數(shù)的圖象是由反比例函數(shù)的圖象向左平移2個(gè)單位長(zhǎng)度得到.靈活運(yùn)用這一知識(shí)解決問(wèn)題.
如圖,已知反比例函數(shù)的圖象C與正比例函數(shù)y=ax(a≠0)的圖象l相交于點(diǎn)A(2,2)和點(diǎn)B.
(1)寫(xiě)出點(diǎn)B的坐標(biāo),并求a的值;
(2)將函數(shù)的圖象和直線AB同時(shí)向右平移n(n>0)個(gè)單位長(zhǎng)度,得到的圖象分別記為C′和l′,已知圖象C′經(jīng)過(guò)點(diǎn)M(2,4).
①求n的值;
②分別寫(xiě)出平移后的兩個(gè)圖象C′和l′對(duì)應(yīng)的函數(shù)關(guān)系式;
③直接寫(xiě)出不等式的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:單選題

如圖,AB∥EF,∠C,則、、的關(guān)系是(   )

A.B.
C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

(2011•重慶)有四張正面分別標(biāo)有數(shù)學(xué)﹣3,0,1,5的不透明卡片,它們除數(shù)字不同外其余全部相同.現(xiàn)將它們背面朝上,洗勻后從中任取一張,將該卡片上的數(shù)學(xué)記為

查看答案和解析>>

同步練習(xí)冊(cè)答案