【題目】如圖,在邊長為1的正方形網(wǎng)格中,A(2,4)B(4,1),C(-3,4)

(1)平移線段AB到線段CD,使點A與點C重合,寫出點D的坐標(biāo).

(2)直接寫出線段AB平移至線段CD處所掃過的面積.

(3)平移線段AB,使其兩端點都在坐標(biāo)軸上,則點A的坐標(biāo)為

【答案】1(-1,1);(215;(3(03)(-2,0)

【解析】

1)根據(jù)點A與點C的坐標(biāo)得出坐標(biāo)變化規(guī)律,從而得到點D的坐標(biāo);
2)根據(jù)平移的性質(zhì)得出ABDC是平行四邊形,根據(jù)平行四邊形的面積公式列式計算即可;
3)分兩種情況:①平移后A的對應(yīng)點在y軸上,B的對應(yīng)點在x軸上;②平移后A的對應(yīng)點在x軸上,B的對應(yīng)點在y軸上.

(1)∵平移線段AB到線段CD,使點A與點C重合,A(24),C(-34),

∴坐標(biāo)變化規(guī)律是:橫坐標(biāo)減去5,縱坐標(biāo)不變,∵B(4,1),∴點D的坐標(biāo)為(-1,1);

(2)∵平移線段AB到線段CD,∴ABCD,AB=CD,

∴四邊形ABDC是平行四邊形,∴線段AB平移至線段CD處所掃過的面積為:5×3=15;

(3)分兩種情況:①如果平移后A的對應(yīng)點在y軸上,B的對應(yīng)點在x軸上,

那么坐標(biāo)變化規(guī)律是:橫坐標(biāo)減去2,縱坐標(biāo)減去1,

A(2,4),∴平移后點A的坐標(biāo)為(0,3)

②如果平移后A的對應(yīng)點在x軸上,B的對應(yīng)點在y軸上,

那么坐標(biāo)變化規(guī)律是:橫坐標(biāo)減去4,縱坐標(biāo)減去4,∵A(2,4),∴平移后點的坐標(biāo)為(-2,0);

故答案為(0,3)(-2,0)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】用適當(dāng)?shù)姆椒ń庀铝蟹匠蹋?/span>

(1)x2﹣x﹣1=0; (2)x2﹣2x=2x+1;

(3)x(x﹣2)﹣3x2=﹣1; (4)(x+3)2=(1﹣2x)2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△OAB和△OCD中,OAOB,OCOD,OAOC,∠AOB=∠COD40°,連接ACBD交于點M,連接OM.下列結(jié)論:ACBD;AMB40°;OM平分∠BOC;MO平分∠BMC.其中正確的是____________________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,的直徑,,上的兩點,平分,

求證:的切線;

過點,如圖,判斷之間的數(shù)量關(guān)系,并證明之;

,求圖中陰影部分的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在平面直角坐標(biāo)系中,點A(,1)在射線OM上,點B(,3)在射線ON上,以AB為直角邊作RtABA1,以BA1為直角邊作第二個RtBA1B1,以A1B1為直角邊作第三個RtA1B1A2,,依此規(guī)律,得到RtB2018A2019B2019,則點B2019的縱坐標(biāo)為________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某廠家新開發(fā)的一種摩托車如圖所示,它的大燈射出的光線與地面的夾角分別為,大燈離地面距離

該車大燈照亮地面的寬度約是多少(不考慮其它因素)?

一般正常人從發(fā)現(xiàn)危險到做出剎車動作的反應(yīng)時間是,從發(fā)現(xiàn)危險到摩托車完全停下所行駛的距離叫做最小安全距離,某人以的速度駕駛該車,從到摩托車停止的剎車距離是,請判斷該車大燈的設(shè)計是否能滿足最小安全距離的要求,請說明理由.(參考數(shù)據(jù):,,

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】正方形A1B1C1O,A2B2C2C1,A3B3C3C2按如圖所示放置,點A1、A2、A3在直線y=x+1上,點C1、C2、C3x軸上,A3的坐標(biāo)是_____,則An的坐標(biāo)是_______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示:△ABC等腰直角三角形BC=AC,直角頂點Cx軸上,一銳角頂點By軸上

(1)如圖1所示,若C的坐標(biāo)是(2,0),點A的坐標(biāo)是(2,﹣2),求點B的坐標(biāo).

(2)如圖2,若y軸恰好平分∠ABC,ACy軸交于點D,過點AAEy E,求證:BD = 2AE

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y=ax2+bx+3過等腰Rt△BOC的兩頂點B、C,且與x軸交于點A(﹣1,0).

(1)求拋物線的解析式;

(2)拋物線的對稱軸與直線BC相交于點M,點Nx軸上一點,當(dāng)以M,N,B為頂點的三角形與△ABC相似時,求BN的長度;

(3)P為線段BC上方的拋物線上的一個動點,P到直線BC的距離是否存在最大值?若存在,請求出這個最大值的大小以及此時點P的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

同步練習(xí)冊答案