【題目】正方形A1B1C1O,A2B2C2C1,A3B3C3C2按如圖所示放置,點A1、A2、A3在直線y=x+1上,點C1、C2、C3x軸上,A3的坐標是_____,則An的坐標是_______

【答案】(3,4);(2n1﹣1,2n1).

【解析】

根據(jù)在直線y=x+1,寫出的坐標然后利用為正方形,,判斷出的坐標,然后再利用在直線y=x+1寫出的坐標,按此方法依次寫出……再觀察各點之間規(guī)律.

∵點、在直線y=x+1,

的坐標(0,1),即=1

∵四邊形為正方形

=1,即點的橫坐標為1,

的坐標(1,2),=2

∵四邊形為正方形

=2,即=3,的橫坐標為3,的坐標為(3,4)……

通過觀察發(fā)現(xiàn):

的橫坐標是0=,的縱坐標是

的橫坐標是,的縱坐標是;

的橫坐標是的縱坐標是4=;

……

據(jù)此可以得到的橫坐標是,縱坐標是,則點,).

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點P是正方形ABCD對角線AC上一動點,點E在射線BC上,且PBPE,連接PD,OAC中點.

(1)如圖1,當點P在線段AO上時,試猜想PEPD的數(shù)量關系和位置關系,不用說明理由;

(2)如圖2,當點P在線段OC上時,(1)中的猜想還成立嗎?請說明理由;

(3)如圖3,當點PAC的延長線上時,請你在圖3中畫出相應的圖形(尺規(guī)作圖,保留作圖痕跡,不寫作法),并判斷(1)中的猜想是否成立?若成立,請直接寫出結(jié)論;若不成立,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,∠ACDABC的外角,CE平分∠ACB,交ABE,CF平分∠ACD,EF//BCAC、CFM、F,EM=3,則CE2+CF2 的值為( )

A.36B.9C.6D.18

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在邊長為1的正方形網(wǎng)格中,A(2,4)B(41),C(-3,4)

(1)平移線段AB到線段CD,使點A與點C重合,寫出點D的坐標.

(2)直接寫出線段AB平移至線段CD處所掃過的面積.

(3)平移線段AB,使其兩端點都在坐標軸上,則點A的坐標為

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】61日起,我國將全面試行居民階梯式電價,某市出臺了實施細則,具體規(guī)定如下:

設用電量為a度,當a≤150時,電價為現(xiàn)行電價,每度0.51元;當150a≤240時,在現(xiàn)行電價基礎上,每度提高0.05元;當a240時,在現(xiàn)行電價基礎上,每度提高0.30元.設某戶的月用電量為x(度),電費為y(元).則yx之間的函數(shù)關系的大致圖像是( 。

A.B.

C.D.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知等腰RtABC中,∠BAC90°.點D從點B出發(fā)在線段BC移動,以AD為腰作等腰RtADE,∠DAE90°.連接CE

⑴如圖,求證:△ACE≌△ABD;

⑵求證:BD2CD22AD2

⑶若AB4,試問:△DCE的面積有沒有最大值,如沒有請說明理由,如有請求出最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在四邊形ABCD中,∠ABC=ADC=90°,連接ACBD,MN分別是AC、BD的中點,連接MN

(1)求證:MNBD.

(2)若∠DAC=62°,∠BAC=58°,求∠DMB

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知,在如圖所示的網(wǎng)格中建立平面直角坐標系后,△ABC三個頂點的坐標分別為A11)、B4,2)、C2,4).

1)畫出△ABC關于y軸的對稱圖形△A1B1C1;

2)借助圖中的網(wǎng)格,請只用直尺(不含刻度)完成以下要求:

①在圖中找一點P,使得PABAC的距離相等,且PAPB;

②在x軸上找一點Q,使得△QAB的周長最小,并求出此時點Q的坐標.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某實驗中學為了解學生最適合自己的考前減壓方式,在九年級范圍內(nèi)開展了一次抽樣調(diào)查,學生必須在四類選項中選擇一項,小明根據(jù)調(diào)查結(jié)果繪制了如下尚不完整的統(tǒng)計圖.

請根據(jù)以上信息解答下列問題:

(1)這次抽樣調(diào)查中,抽查的學生人數(shù)為______人.

(2)請補全條形統(tǒng)計圖.

(3)扇形統(tǒng)計圖中其他所對應扇形圓心角為______度.

(4)若實驗中學九年級有700人,請估計采用聽音樂作為減壓方式的人數(shù).

查看答案和解析>>

同步練習冊答案