【題目】如圖,在平面直角坐標(biāo)系中,直線y=﹣5x+5x軸、y軸分別交于A,C兩點(diǎn),拋物線yx2+bx+c經(jīng)過(guò)A,C兩點(diǎn),與x軸交于另一點(diǎn)B

1)求拋物線解析式及B點(diǎn)坐標(biāo);

2x2+bx+c5x+5的解集是   ;

3)若點(diǎn)M為拋物線上一動(dòng)點(diǎn),連接MAMB,當(dāng)點(diǎn)M運(yùn)動(dòng)到某一位置時(shí),ABM面積為ABC的面積的倍,求此時(shí)點(diǎn)M的坐標(biāo).

【答案】1)(5,0);(20≤x≤1;(3)(3,﹣4)或(3+2,4)或(32,4

【解析】

1)根據(jù)已知條件將A點(diǎn)、C點(diǎn)代入拋物線即可求解;

2)觀察直線在拋物線上方的部分,根據(jù)拋物線與直線的交點(diǎn)坐標(biāo)即可求解;

3)先設(shè)動(dòng)點(diǎn)M的坐標(biāo),再根據(jù)兩個(gè)三角形的面積關(guān)系即可求解.

1)因?yàn)橹本y=﹣5x+5x軸、y軸分別交于A,C兩點(diǎn),

所以當(dāng)x0時(shí),y5,所以C0,5

當(dāng)y0時(shí),x1,所以A1,0

因?yàn)閽佄锞yx2+bx+c經(jīng)過(guò)AC兩點(diǎn),

所以c5,1+b+50,解得b=﹣6,

所以拋物線解析式為yx26x+5

當(dāng)y0時(shí),0x26x+5.解得x11,x25

所以B點(diǎn)坐標(biāo)為(5,0).

答:拋物線解析式為yx26x+5B點(diǎn)坐標(biāo)為(5,0);

2)觀察圖象可知:

x2+bx+c≤5x+5的解集是0≤x≤1

故答案為0≤x≤1

3)設(shè)Mmm26m+5

因?yàn)?/span>SABMSABC×4×58

所以×4|m26m+5|8

所以|m26m+5|±4

所以m26m+90m26m+10

解得m1m23m3±2

所以M點(diǎn)的坐標(biāo)為(3,﹣4)或(3+2,4)或(324).

答:此時(shí)點(diǎn)M的坐標(biāo)為(3,﹣4)或(3+2,4)或(32,4).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知的直徑,的弦,點(diǎn)外,連接,的平分線交于點(diǎn).

1)若,求證:的切線;

2)若,,求弦的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】菲爾茲獎(jiǎng)是國(guó)際上享有崇高聲譽(yù)的一個(gè)數(shù)學(xué)獎(jiǎng)項(xiàng),每4年評(píng)選一次,頒給有卓越貢獻(xiàn)的年輕數(shù)學(xué)家,被視為數(shù)學(xué)界的諾貝爾獎(jiǎng).下面的數(shù)據(jù)是從1936年至201445歲以下菲爾茲獎(jiǎng)得住獲獎(jiǎng)時(shí)的年齡(歲):39 35 33 39 27 33 35 31 31 37 32 38 36 31 39 32 38 37 34 34 38 32 35 36 33 32 35 36 37 39 38 40 38 37 39 38 34 33 40 36 36 37 31 38 38 37 35 40 39 37

請(qǐng)根據(jù)以上數(shù)據(jù),解答以下問(wèn)題:

1)小彬按組距為5”列出了如下的頻數(shù)分布表,每組數(shù)據(jù)含最小值不含最大值,請(qǐng)將表中空缺的部分補(bǔ)充完整,并補(bǔ)全頻數(shù)分布直方圖:

2)在(1)的基礎(chǔ)上,小彬又畫出了如圖所示的扇形統(tǒng)計(jì)圖,圖中B組所對(duì)的圓心角的度數(shù)為   ;

3)根據(jù)(1)中的頻數(shù)分布直方圖試描述這50位菲爾茲獎(jiǎng)得主獲獎(jiǎng)時(shí)的年齡的分布特征.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,AB是⊙O的直徑,⊙O過(guò)AC的中點(diǎn)D,DE切⊙O于點(diǎn)D,交BCE

1)求證DEBC;

2)若⊙O的半徑為5,BE2,求DE的長(zhǎng)度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在RtABC中,∠C90°AD是∠BAC的平分線,ABBD.

(1)tanDAC的值.

(2)BD4,求SABC.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,∠C=90°,M是AB的中點(diǎn),動(dòng)點(diǎn)P從點(diǎn)A出發(fā),

沿AC方向勻速運(yùn)動(dòng)到終點(diǎn)C,動(dòng)點(diǎn)Q從點(diǎn)C出發(fā),沿CB方向勻速運(yùn)動(dòng)到終點(diǎn)B.已知P,Q兩點(diǎn)同時(shí)出發(fā),并同時(shí)到達(dá)終點(diǎn).連結(jié)MP,MQ,PQ.在整個(gè)運(yùn)動(dòng)過(guò)程中,△MPQ的面積大小變化情況是【 】

A.一直增大 B.一直減小 C.先減小后增大 D.先增大后減小

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校初三(1)班的同學(xué)踴躍為雅安蘆山地震捐款,根據(jù)捐款情況(捐款數(shù)為正數(shù))制作以下統(tǒng)計(jì)圖表,但生活委員不小心把墨水滴在統(tǒng)計(jì)表上,部分?jǐn)?shù)據(jù)看不清楚.

1)全班有多少人捐款?

2)如果捐款0~20元的人數(shù)在扇形統(tǒng)計(jì)圖中所占的圓心角為72°,那么捐款21~40元的有多少人?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖是二次函數(shù)y=ax2+bx+c(a,b,c是常數(shù),a0)圖象的一部分,與x軸的交點(diǎn)A在點(diǎn)(2,0)和(3,0)之間,對(duì)稱軸是x=1.對(duì)于下列說(shuō)法:①ab<0;②2a+b=0;③3a+c>0;④a+b≥m(am+b)(m為實(shí)數(shù));當(dāng)﹣1<x<3時(shí),y0,其中正確的是(  

A. ①②④ B. ①②⑤ C. ②③④ D. ③④⑤

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某高中學(xué)校為高一新生設(shè)計(jì)的學(xué)生板凳的正面視圖如圖所示,其中BA=CD,BC=20cmBC、EF平行于地面AD且到地面AD的距離分別為40cm、8cm.為使板凳兩腿底端A、D之間的距離為50cm,那么橫梁EF應(yīng)為多長(zhǎng)?(材質(zhì)及其厚度等暫忽略不計(jì)).

查看答案和解析>>

同步練習(xí)冊(cè)答案