【題目】如圖,AB為⊙O的直徑,C為⊙O上一點(diǎn),D為BC延長(zhǎng)線一點(diǎn),且BC=CD,CE⊥AD于點(diǎn)E.
(1)求證:直線EC為⊙O的切線;
(2)設(shè)BE與⊙O交于點(diǎn)F,AF的延長(zhǎng)線與EC交于點(diǎn)P,已知∠PCF=∠CBF,PC=5,PF=3.求:cos∠PEF的值.
【答案】(1)詳見(jiàn)解析;(2).
【解析】
(1)說(shuō)明OC是△BDA的中位線,利用中位線的性質(zhì),得到∠OCE=∠CED=90°,從而得到CE是圓O的切線.
(2)利用直徑上的圓周角,得到△PEF是直角三角形,利用角相等,可得到△PEF∽△PEA、△PCF∽△PAC,從而得到PC=PE=5.然后求出cos∠PEF的值.
(1)證明:∵CE⊥AD于點(diǎn)E
∴∠DEC=90°,
∵BC=CD,
∴C是BD的中點(diǎn),
又∵O是AB的中點(diǎn),
∴OC是△BDA的中位線,
∴OC∥AD,
∴∠OCE=∠CED=90°,
∴OC⊥CE,
又∵點(diǎn)C在圓上,
∴CE是圓O的切線;
(2)連接AC,
∵AB是直徑,點(diǎn)F在圓上
∴∠AFB=∠PFE=90°=∠CEA,
∵∠EPF=∠EPA,
∴△PEF∽△PEA,
∴PE2=PF×PA,
∵∠FBC=∠PCF=∠CAF,
又∵∠CPF=∠CPA,
∴△PCF∽△PAC,
∴PC2=PF×PA,
∴PE=PC,
在直角△PEF中,
∴EF=4,cos∠PEF=.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為調(diào)查廣西北部灣四市市民上班時(shí)最常用的交通工具的情況,隨機(jī)抽取了四市部分市民進(jìn)行調(diào)查,要求被調(diào)查者從“A:自行車,B:電動(dòng)車,C:公交車,D:家庭汽車,E:其他”五個(gè)選項(xiàng)中選擇最常用的一項(xiàng),將所有調(diào)查結(jié)果整理后繪制成如下不完整的條形統(tǒng)計(jì)圖和扇形統(tǒng)計(jì)圖,請(qǐng)結(jié)合統(tǒng)計(jì)圖回答下列問(wèn)題:
(1)在這次調(diào)查中,一共調(diào)查了 名市民,扇形統(tǒng)計(jì)圖中,C組對(duì)應(yīng)的扇形圓心角是 °;
(2)請(qǐng)補(bǔ)全條形統(tǒng)計(jì)圖;
(3)若甲、乙兩人上班時(shí)從A、B、C、D四種交通工具中隨機(jī)選擇一種,則甲、乙兩人恰好選擇同一種交通工具上班的概率是多少?請(qǐng)用畫樹狀圖或列表法求解.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在等腰△ABC中,AC=BC,以BC為直徑的⊙O分別與AB,AC相交于點(diǎn)D,E,過(guò)點(diǎn)D作DF⊥AC,垂足為點(diǎn)F.
(1)求證:DF是⊙O的切線;
(2)分別延長(zhǎng)CB,F(xiàn)D,相交于點(diǎn)G,∠A=60°,⊙O的半徑為6,求陰影部分的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖所示,以BC為直徑的⊙O中,點(diǎn)A、E為圓周上兩點(diǎn),過(guò)點(diǎn)A作AD⊥BC,垂足為D,作AF⊥CE的延長(zhǎng)線于點(diǎn)F,垂足為F,連接AC、AO,已知BD=EF,BC=4.
(1)求證:∠ACB=∠ACF;
(2)當(dāng)∠AEF= °時(shí),四邊形AOCE是菱形;
(3)當(dāng)AC= 時(shí),四邊形AOCE是正方形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,直線y=﹣x+6與x軸、y軸分別交于A、B兩點(diǎn),點(diǎn)P是以C(﹣1,0)為圓心,1為半徑的圓上一點(diǎn),連接PA,PB,則△PAB面積的最大值為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)y=x2﹣(1+m)x﹣2m,當(dāng)﹣1≤x≤1時(shí),至少有一個(gè)x值使函數(shù)值y≥m成立,則m的取值范圍是_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知在△ABC中,∠BAC>90°,點(diǎn)D為BC的中點(diǎn),點(diǎn)E在AC上,將△CDE沿DE折疊,使得點(diǎn)C恰好落在BA的延長(zhǎng)線上的點(diǎn)F處,連結(jié)AD,則下列結(jié)論不一定正確的是( 。
A. AE=EF B. AB=2DE
C. △ADF和△ADE的面積相等 D. △ADE和△FDE的面積相等
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y=﹣x+b交x軸于點(diǎn)A,交y軸于點(diǎn)B(0,1),與反比例函數(shù)的圖象交于點(diǎn)C,C點(diǎn)的橫坐標(biāo)是﹣2.
(1)求反比例函數(shù)y1的解析式;
(2)設(shè)函數(shù)的圖象與的圖象關(guān)于y軸對(duì)稱,在的圖象上取一點(diǎn)D(D點(diǎn)的橫坐標(biāo)大于1),過(guò)D點(diǎn)作DE⊥x軸于點(diǎn)E,若四邊形OBDE的面積為10,求D點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,tanA=2,以BC為直徑的⊙O分別交AB、AC于點(diǎn)D、點(diǎn)E,若D是AB的中點(diǎn),OD=5,則AE=_____.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com