【題目】如圖,以為邊作等邊,連接,,

判斷的數(shù)量關(guān)系,并求的夾角的度數(shù);

繼續(xù)探索,如圖,以為邊作正方形,連接、,判斷的數(shù)量關(guān)系,并求出此時(shí)的夾角;

如圖、分別是、的中點(diǎn),、分別是正方形的中心,順次連接,判斷四邊形的形狀并證明.

【答案】(1),的度數(shù)為;(2)的夾角為;(3) 四邊形為正方形,理由詳見(jiàn)解析.

【解析】

(1)根據(jù)等邊三角形的性質(zhì)可得AB=AD,AE=AC,∠BAD=∠CAE=60°,再求出∠BAE=∠DAC,然后利用“邊角邊”證明△ABE和△ADC全等,根據(jù)全等三角形對(duì)應(yīng)邊相等可得BE=DC,全等三角形對(duì)應(yīng)角相等可得∠AEB=∠ACD,然后∠FEC+∠FCE=120°,再根據(jù)三角形內(nèi)角和定理計(jì)算即可得解;(2)根據(jù)正方形的性質(zhì)可得AB=AF,AC=AH,∠BAF=∠CAH=90°,再求出∠BAH=∠CAF,然后利用“邊角邊”證明△ABH和△AFC全等,根據(jù)全等三角形對(duì)應(yīng)邊相等可得BH=FC,全等三角形對(duì)應(yīng)角相等可得∠AFC=∠ABH,然后∠EFC+∠EBH=180°,設(shè)BH、CF相交于點(diǎn)G,再根據(jù)四邊形的內(nèi)角和定理計(jì)算即可求出∠BGF=90°,根據(jù)垂線的定義即可得證;根據(jù)正方形的對(duì)角線互相平分可得點(diǎn)P、Q分別是BF、CH的中點(diǎn),再根據(jù)三角形的中位線平行于第三邊并且等于第三邊的一半可得PN∥BH,PN=BH,MQ∥BH,MQ=BH,NQ∥CF,NQ=CF,PM∥CF,PM=CF,再根據(jù)(2)的結(jié)論可得BH=CF,BH⊥CF,然后求出MP=PN=NQ=MQ,從而判定四邊形MPNQ是菱形,再根據(jù)BH⊥CF求出PN⊥NQ,根據(jù)有一個(gè)角是直角的菱形是正方形證明.

都是等邊三角形,

,,,

,

,

中,,

,

,,

,

;

的度數(shù)為;

在正方形中,,,,

,

中,,

,

,

設(shè)相交于點(diǎn),

,

,

的夾角為

四邊形為正方形.理由如下:

、分別是正方形的中心,

、分別是、的中點(diǎn),

、分別是、的中點(diǎn),

,,,,,,,

根據(jù)的結(jié)論,,

,

四邊形是菱形,

,,,

菱形是正方形,

故四邊形為正方形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某農(nóng)產(chǎn)品生產(chǎn)基地收獲紅薯192噸,準(zhǔn)備運(yùn)給甲、乙兩地的承包商進(jìn)行包銷(xiāo).該基地用大、小兩種貨車(chē)共18輛恰好能一次性運(yùn)完這批紅薯,已知這兩種貨車(chē)的載重量分別為14/噸和8/輛,運(yùn)往甲、乙兩地的運(yùn)費(fèi)如下表:

車(chē)型

運(yùn)費(fèi)

運(yùn)往甲地/(元/輛)

運(yùn)往乙地/(元/輛)

大貨車(chē)

720

800

小貨車(chē)

500

650

(1)求這兩種貨車(chē)各用多少輛;

(2)如果安排10輛貨車(chē)前往甲地,其余貨車(chē)前往乙地,其中前往甲地的大貨車(chē)為a輛,總運(yùn)費(fèi)為w元,求w關(guān)于a的函數(shù)關(guān)系式;

(2)在(2)的條件下,若甲地的承包商包銷(xiāo)的紅薯不少于96噸,請(qǐng)你設(shè)計(jì)出使總運(yùn)費(fèi)最低的貨車(chē)調(diào)配方案,并求出最低總運(yùn)費(fèi).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形ABCD中,∠A=∠B=90°,E是AB上一點(diǎn),且AE=BC,∠1=∠2.

(1)證明:AB=AD+BC;

(2)判斷△CDE的形狀?并說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,邊長(zhǎng)為的正方形中,的中點(diǎn),連接,連接,過(guò)的延長(zhǎng)線于,則的長(zhǎng)為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在平面直角坐標(biāo)系xOy中,O為原點(diǎn),點(diǎn)A、C 的坐標(biāo)分別為(2,0)、(13),將△AOCAC的中點(diǎn)旋轉(zhuǎn)180°,點(diǎn)O落到點(diǎn)B的位置,D的坐標(biāo)為(1-).若點(diǎn)Px軸上一點(diǎn),以P、A、D為頂點(diǎn)作平行四邊形,該平行四邊形的另一頂點(diǎn)在y軸上,則點(diǎn)P的坐標(biāo)為_________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在如圖的方格中,每個(gè)小正方形的邊長(zhǎng)都為1,△ABC的頂點(diǎn)均在格點(diǎn)上.在建立平面直角坐標(biāo)系后,點(diǎn)B的坐標(biāo)為(﹣1,2).

(1)把△ABC向下平移8個(gè)單位后得到對(duì)應(yīng)的△A1B1C1,畫(huà)出△A1B1C1

(2)畫(huà)出與△A1B1C1關(guān)于y軸對(duì)稱(chēng)的△A2B2C2;

(3)若點(diǎn)P(a,b)是△ABC邊上任意一點(diǎn),P2是△A2B2C2邊上與P對(duì)應(yīng)的點(diǎn),寫(xiě)出P2的坐標(biāo)為    ;

(4)試在y軸上找一點(diǎn)Q(在圖中標(biāo)出來(lái)),使得點(diǎn)Q到B2、C2兩點(diǎn)的距離之和最小,并求出QB2+QC2的最小值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在平面直角坐標(biāo)系中,點(diǎn)A的坐標(biāo)為(﹣6,6),以A為頂點(diǎn)的∠BAC的兩邊始終與x軸交于BC兩點(diǎn)(BC左面),且∠BAC45°.

1)如圖,連接OA,當(dāng)ABAC時(shí),試說(shuō)明:OAOB

2)過(guò)點(diǎn)AADx軸,垂足為D,當(dāng)DC2時(shí),將∠BAC沿AC所在直線翻折,翻折后邊ABy軸于點(diǎn)M,求點(diǎn)M的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,三孔橋橫截面的三個(gè)孔都呈拋物線形,左右兩個(gè)拋物線形是全等的.正常水位時(shí),大孔水面寬度為,頂點(diǎn)距水面,小孔頂點(diǎn)距水面.當(dāng)水位上漲剛好淹沒(méi)小孔時(shí),大孔的水面寬度為________

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知邊長(zhǎng)為2的正六邊形ABCDEF在平面直角坐標(biāo)系中的位置如圖所示,點(diǎn)B在原點(diǎn),把正六邊形ABCDEF沿x軸正半軸作無(wú)滑動(dòng)的連續(xù)翻轉(zhuǎn),每次翻轉(zhuǎn)60°,經(jīng)過(guò)2018次翻轉(zhuǎn)之后,點(diǎn)B的坐標(biāo)是______

查看答案和解析>>

同步練習(xí)冊(cè)答案