【題目】2018年高一新生開始,某省全面啟動高考綜合改革,實行“3+1+2”的高考選考方案.“3”是指語文、數(shù)學、外語三科必考;“1”是指從物理、歷史兩科中任選一科參加選考,“2”是指從政治、化學、地理、生物四科中任選兩科參加選考
(1)“1+2”的選考方案共有多少種?請直接寫出所有可能的選法;(選法與順序無關,例如:“物、政、化”與“物、化、政”屬于同一種選法)
(2)高一學生小明和小杰將參加新高考,他們酷愛歷史和生物,兩人約定必選歷史和生物.他們還需要從政治、化學、地理三科中選一科參考,若這三科被選中的機會均等,請用列表或畫樹狀圖的方法,求出他們恰好都選中政治的概率.
科目:初中數(shù)學 來源: 題型:
【題目】如圖1,在△ABC中,BA=BC,點D,E分別在邊BC、AC上,連接DE,且DE=DC.
(1)問題發(fā)現(xiàn):若∠ACB=∠ECD=45°,則 .
(2)拓展探究,若∠ACB=∠ECD=30°,將△EDC繞點C按逆時針方向旋轉(zhuǎn)α度(0°<α<180°),圖2是旋轉(zhuǎn)過程中的某一位置,在此過程中的大小有無變化?如果不變,請求出的值,如果變化,請說明理由.
(3)問題解決:若∠ACB=∠ECD=β(0°<β<90°),將△EDC旋轉(zhuǎn)到如圖3所示的位置時,則的值為 .(用含β的式子表示)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,菱形ABCD的邊長為2,∠A=60°,點P和點Q分別從點B和點C出發(fā),沿射線BC向右運動并且始終保持BP=CQ,過點Q作QH⊥BD,垂足為H,連接PH,設點P運動的距離為x(0<x≤2),△BPH的面積為s,則能反映s與x之間的函數(shù)關系的圖象大致為 ( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC,BA=BC,以BC為直徑的⊙O分別交AB、AC于點E、D,點F在BA的延長線上,且∠ACF=∠ABC,
(1)求證:直線CF是⊙O的切線; (2)若BC=5,sin∠ACF=,求CF的長。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,中,,為上一點,經(jīng)過點,與相交于點E,與交于點,連接.
(I).如圖,若,,求的長.
(II)如圖,平分,交于點,經(jīng)過點.
①求證:為的切線;
②若,,求的長.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖是王阿姨晚飯后步行的路程s(單位:m)與時間t(單位:min)的函數(shù)圖象,其中曲線段AB是以B為頂點的拋物線一部分.下列說法不正確的是( )
A.25min~50min,王阿姨步行的路程為800m
B.線段CD的函數(shù)解析式為
C.5min~20min,王阿姨步行速度由慢到快
D.曲線段AB的函數(shù)解析式為
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知二次函數(shù)的圖象與x軸交于A、B兩點,D為頂點,其中點B的坐標為,點D的坐標為.
(1)求該二次函數(shù)的表達式;
(2)點E是線段BD上的一點,過點E作x軸的垂線,垂足為F,且,求點E的坐標.
(3)試問在該二次函數(shù)圖象上是否存在點G,使得的面積是的面積的?若存在,求出點G的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com