【題目】如圖1,在RtABC中,∠BAC90°,ABAC,DE兩點(diǎn)分別在AC,BC上,且DEAB,將△CDE繞點(diǎn)C按順時(shí)針方向旋轉(zhuǎn),記旋轉(zhuǎn)角為α

1)問題發(fā)現(xiàn):當(dāng)α0°時(shí),的值為   ;

2)拓展探究:當(dāng)0°≤α360°時(shí),若△EDC旋轉(zhuǎn)到如圖2的情況時(shí),求出的值;

3)問題解決:當(dāng)△EDC旋轉(zhuǎn)至A,BE三點(diǎn)共線時(shí),若設(shè)CE5AC4,直接寫出線段BE的長   

【答案】1;(2;(371

【解析】

1)先證△DEC為等腰直角三角形,求出,再通過平行線分線段成比例的性質(zhì)可直接寫出的值;

2)證△BCE∽△ACD,由相似三角形的性質(zhì)可求出的值;

3)分兩種情況討論,一種是點(diǎn)E在線段BA的延長線上,一種是點(diǎn)E在線段BA上,可分別通過勾股定理求出AE的長,即可寫出線段BE的長.

1)∵∠BAC=90°,AB=AC

∴△ABC為等腰直角三角形,∠B=45°.

DEAB,

∴∠DEC=B=45°,∠CDE=A=90°,

∴△DEC為等腰直角三角形,

cosC

DEAB

故答案為:;

2)由(1)知,△BAC和△CDE均為等腰直角三角形,

又∵∠BCE=ACD,

∴△BCE∽△ACD,

,

3)①如圖31,當(dāng)點(diǎn)E在線段BA的延長線上時(shí).

∵∠BAC=90°,

∴∠CAE=90°,

AE3,

BE=BA+AE=4+3=7

②如圖32,當(dāng)點(diǎn)E在線段BA上時(shí),

AE3,

BE=BAAE=43=1

綜上所述:BE的長為71

故答案為:71

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,點(diǎn)O為坐標(biāo)原點(diǎn),直角三角形AOB的直角頂點(diǎn)Bx軸正半軸上,點(diǎn)A在第一象限,OB2,tanAOB2

1)求圖象經(jīng)過點(diǎn)A的反比例函數(shù)的解析式;

2)點(diǎn)C是(1)中反比例函數(shù)圖象上一點(diǎn),連接OCAB于點(diǎn)D,連接AC,若DOC中點(diǎn),求△ADC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形 OAA1B1 是邊長為 1 的正方形,以對(duì)角線 OA1 為邊作第二個(gè)正方形 OA1A2B2,連接 AA2,得到△ AA1A2;再以對(duì)角線 OA2 為邊作第三個(gè)正方形 OA2A3B3,連接 A1A3,得到△A1A2A3;再以對(duì)角線 OA3 為邊作第 四個(gè)正方形,連接 A2A4,得到△A2A3A4……記△AA1A2、△A1A2A3、△A2A3A4 的面積分別為 S1、S2S3,如此下 去,則 S2019_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,已知⊙OABC的外接圓,AB為⊙O的直徑,AC=6cm,BC=8cm.

(1)求⊙O的半徑;

(2)請(qǐng)用尺規(guī)作圖作出點(diǎn)P,使得點(diǎn)P優(yōu)弧CAB上時(shí),PBC的面積最大,請(qǐng)保留作圖痕跡,并求出PBC面積的最大值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的直徑,點(diǎn)CD在⊙O上,連接ADBC、BD、DC,若BD = CD,∠DBC = 20°,則,∠ABC =_________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,的角平分線,上,,若,,,則________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,線段的中點(diǎn),動(dòng)點(diǎn)到點(diǎn)的距離是1,連接,線段繞點(diǎn)逆時(shí)針旋轉(zhuǎn)90°得到線段,連接,則線段長度的最大值是(

A.2B.3C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在正方形中,點(diǎn)是對(duì)角線的中點(diǎn),是線段上的動(dòng)點(diǎn)(不與點(diǎn),重合),于點(diǎn),于點(diǎn).則對(duì)于下列結(jié)論:①;②;③;④,其中錯(cuò)誤結(jié)論的個(gè)數(shù)是(

A.0B.1C.2D.3

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,ABO直徑,DO上一點(diǎn),AT平分BADO于點(diǎn)T,過TAD的垂線交AD的延長線于點(diǎn)C

1)求證:CTO的切線;

2)若O半徑為2CT=,求AD的長.

查看答案和解析>>

同步練習(xí)冊(cè)答案