【題目】已知:如圖,已知⊙O是△ABC的外接圓,AB為⊙O的直徑,AC=6cm,BC=8cm.
(1)求⊙O的半徑;
(2)請用尺規(guī)作圖作出點P,使得點P在優(yōu)弧CAB上時,△PBC的面積最大,請保留作圖痕跡,并求出△PBC面積的最大值.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點P( x, y1)與Q (x, y2)分別是兩個函數(shù)圖象C1與C2上的任一點. 當a ≤ x ≤ b時,有-1 ≤ y1 - y2 ≤ 1成立,則稱這兩個函數(shù)在a ≤ x ≤ b上是“相鄰函數(shù)”,否則稱它們在a ≤ x ≤ b上是“非相鄰函數(shù)”.
例如,點P(x, y1)與Q (x, y2)分別是兩個函數(shù)y = 3x+1與y = 2x - 1圖象上的任一點,當-3 ≤ x ≤ -1時,y1 - y2 = (3x + 1) - (2x - 1) = x + 2,通過構造函數(shù)y = x + 2并研究該函數(shù)在-3 ≤ x ≤ -1上的性質,得到該函數(shù)值的范圍是-1 ≤ y ≤ 1,所以-1 ≤ y1 - y2 ≤ 1成立,因此這兩個函數(shù)在-3 ≤ x ≤ -1上是“相鄰函數(shù)”.
(1)判斷函數(shù)y = 3x + 2與y = 2x + 1在-2 ≤ x≤ 0上是否為“相鄰函數(shù)”,說明理由;
(2)若函數(shù)y = x2 - x與y = x - a在0 ≤ x ≤ 2上是“相鄰函數(shù)”,求a的取值范圍;
(3)若函數(shù)y =與y =-2x + 4在1 ≤ x ≤ 2上是“相鄰函數(shù)”,直接寫出a的最大值與最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】江蘇衛(wèi)視《最強大腦》曾播出一期“辨臉識人”節(jié)目,參賽選手以家庭為單位,每組家庭由爸爸媽媽和寶寶3人組成,爸爸、媽媽和寶寶分散在三塊區(qū)域,選手需在寶寶中選一個寶寶,然后分別在爸爸區(qū)域和媽媽區(qū)域中正確找出這個寶寶的父母,不考慮其他因素,僅從數(shù)學角度思考,已知在本期比賽中有A、B、C三組家庭進行比賽.
(1)若機器人智能小度選擇A組家庭的寶寶,求小度在媽媽區(qū)域中正確找出其媽媽的概率;
(2)如果任選一個寶寶(假如選A組家庭),通過列表或樹狀圖的方法,求機器人智能小度至少正確找對寶寶父母其中一人的概率.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,一次函數(shù)y=-2x與二次函數(shù)y=ax2+2ax+c的圖像交于A、B兩點(點A在點B的右側),與其對稱軸交于點C.
(1)求點C的坐標;
(2)設二次函數(shù)圖像的頂點為D,點C與點D關于 x軸對稱,且△ACD的面積等于2.
① 求二次函數(shù)的解析式;
② 在該二次函數(shù)圖像的對稱軸上求一點P(寫出其坐標),使△PBC與△ACD相似.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知DC∥FP,∠1=∠2,∠FED=28,∠AGF=80,F(xiàn)H平分∠EFG.
(1)說明:DC∥AB;
(2)求∠PFH的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】下列不等式變形中,錯誤的是( 。
A. 若a≥b,則a+c≥b+cB. 若a+c≥b+c,則a≥b
C. 若a≥b,則ac2≥bc2D. 若ac2≥bc2,則a≥b
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,四邊形OMTN中,OM=ON,TM=TN,我們把這種兩組鄰邊分別相等的四邊形叫做箏形.
(1)探究箏形對角線之間的位置關系,并證明你的結論;
(2)在箏形ABCD中,已知AB=AD=10,BC=CD,BC>AB,BD、AC為對角線,BD=16.
①若∠ABC=90°,求AC的長;
②過點B作BF⊥CD于F,BF交AC于點E,連接DE.當四邊形ABED為菱形時,求點F到AB的距離.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知函數(shù)y=x2-x+2,當x=2時,函數(shù)值y=_____;已知函數(shù)y=3x2,當x=______時,函數(shù)值y=12.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com