【題目】如圖,線段AB 是⊙O的直徑,弦CD⊥AB于點H,點M是弧CBD 上任意一點,AH=2,CH=4.
(1)求⊙O 的半徑r 的長度;
(2)求sin∠CMD;
(3)直線BM交直線CD于點E,直線MH交⊙O 于點 N,連接BN交CE于點 F,求HEHF的值.
【答案】(1)5;(2);(3)16
【解析】(1)在Rt△COH中,利用勾股定理即可解決問題;
(2)只要證明∠CMD=△COA,求出sin∠COA即可;
(3)由△EHM∽△NHF,推出,推出HEHF=HMHN,又HMHN=AHHB,推出HEHF=AHHB,由此即可解決問題.
(1)連接OC,
在Rt△COH中,
∵CH=4,OH=r-2,OC=r.
∴ (r-2)2+42=r2.
∴ r=5;
(2)∵弦CD與直徑AB垂直,
∴,
∴ ∠AOC=∠COD,
∴∠CMD=∠COD,
∴ ∠CMD=∠AOC,
∴sin∠CMD=sin∠AOC,
在Rt△COH中,
∴sin∠AOC=,
∴sin∠CMD=;
(3)連接AM,
∴∠AMB=90°,
在Rt△AMB中,
∴∠MAB+∠ABM=90°,
在Rt△EHB中,
∴∠E+∠ABM=90°,
∴∠MAB=∠E,
∵ ,
∴∠MNB=∠MAB=∠E,
∵∠EHM=∠NHF,
∴△EHM∽△NHF,
∴,
∴HEHF=HMHN,
∵AB與MN交于點H,
∴HMHN=HAHB=HA(2r-HA)=2×(10-2)=16,
∴HEHF=16.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知△ABC,(1)如圖①,若P點是∠ABC和∠ACB的角平分線的交點,則∠P=90°+∠A;(2)如圖②,若P點是∠ABC和外角∠ACE的角平分線的交點,則∠P=90°-∠A;(3)如圖③,若P點是外角∠CBF和∠BCE的角平分線的交點,則∠P=90°-∠A.上述說法正確的個數(shù)是( )
A. 0個B. 1個C. 2個D. 3個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,在△ABC中,∠BAC=106°,EF、MN分別是AB、AC的垂直平分線,點E、N在BC上,則∠EAN=_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校要從小王和小李兩名同學(xué)中挑選一人參加全市知識競賽,在最近的五次選拔測試中,他倆的成績分別如下表:
姓 名 | 1 | 2 | 3 | 4 | 5 |
小 王 | 60 | 75 | 100 | 90 | 75 |
小 李 | 70 | 90 | 80 | 80 | 80 |
根據(jù)上表解答下列問題:
(1)完成下表:
姓 名 | 平均成績(分) | 中位數(shù)(分) | 眾數(shù)(分) | 方差 |
小 王 | 75 | 190 | ||
小 李 | 80 | 80 |
(2)在這五次測試中,成績比較穩(wěn)定的同學(xué)是誰?若將80分以上(含80分)的成績視為秀,則小王、小李在這五次測試中的優(yōu)秀率各是多少?
(3)歷屆比賽表明,成績達到80分以上(含80分)就很可能獲獎,成績達到90分以上(含90分)就很可能獲得一等獎,那么你認(rèn)為選誰參加比賽比較合適?說明你的理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】“校園安全”受到全社會的廣泛關(guān)注,某校政教處對部分學(xué)生及家長就校園安全知識的了解程度進行了隨機抽樣調(diào)查,并繪制成如圖所示的兩幅統(tǒng)計圖,請根據(jù)統(tǒng)計圖中的信息,解答下列問題:
參與調(diào)查的學(xué)生及家長共有 人;
在扇形統(tǒng)計圖中,求“基本了解"所對應(yīng)的扇形的圓心角的度數(shù);
在條形統(tǒng)計圖中,“非常了解”所對應(yīng)的學(xué)生人數(shù)是______人 并補全條形統(tǒng)計圖.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知等腰△ABC中,AD⊥BC于點D,且AD=BC,則△ABC底角的度數(shù)為( )
A.45°B.75°C.45°或75°D.60°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下列多面體,并把下表補充完整.
名稱 | 三棱柱 | 四棱柱 | 五棱柱 | 六棱柱 |
圖形 | ||||
頂點數(shù) | 6 | 10 | 12 | |
棱數(shù) | 9 | 12 | ||
面數(shù) | 5 | 8 |
觀察上表中的結(jié)果,你能發(fā)現(xiàn)、、之間有什么關(guān)系嗎?請寫出關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】甲、乙兩人在筆直的湖邊公路上同起點、同終點、同方向勻速步行2400米,先到終點的人原地休息.已知甲先出發(fā)4分鐘.在整個步行過程中,甲、乙兩人的距離y(米)與甲出發(fā)的時間t
(分)之間的關(guān)系如圖所示,下列結(jié)論:
①甲步行的速度為60米/分;
②乙走完全程用了30分鐘;
③乙用16分鐘追上甲;
④乙到達終點時,甲離終點還有320米
其中正確的結(jié)論有( 。
A. 1 個B. 2 個C. 3 個D. 4 個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,已知A,B,且滿足
(1)求A、B兩點的坐標(biāo);
(2)點C在線段AB上,m、n滿足n-m=5,點D在y軸負半軸上,連CD交x軸的負半軸于點M,且S△MBC=S△MOD,求點D的坐標(biāo);
(3)平移直線AB,交x軸正半軸于E,交y軸于F,P為直線EF上第三象限內(nèi)的點,過P作PG⊥x軸于G,若S△PAB=20,且GE=12,求點P的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com