【題目】如圖,AB為O直徑,C、D為O上不同于A、B的兩點(diǎn),OC平分ACD,過點(diǎn)C作CEDB,垂足為E,直線AB與直線CE相交于F點(diǎn).

(1)求證:CF為O的切線;

(2)當(dāng)BF=2,F=30°時(shí),求BD的長.

【答案】(1)見解析;(2)2.

【解析】

(1)根據(jù)角平分線的定義和根據(jù)切線的判定即可證明CF⊙O的切線;

(2)連結(jié)AD.根據(jù)相似三角形的判定和性質(zhì)解答即可.

(1)∵OC平分∠ACD,

∴∠ACO=∠OCD,

∵∠A=∠D=∠ACO,

∴∠D=∠OCD,

∴OC∥DE,

∵DE⊥CF,

∴OC⊥CF,

CF為O的切線;

(2)連接AD,

∵BE∥OC,

∴△FEB∽△FCO,

= ,

解得:r=2,

∴AB=4,

∵∠ABD=60°,

∴BD=2.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在△ABC和△DCE中,CA=CB,CD=CE,∠CAB= CED=α.

(1)如圖1,將AD、EB延長,延長線相交于點(diǎn)0.

①求證:BE= AD;

②用含α的式子表示∠AOB的度數(shù)(直接寫出結(jié)果);

(2)如圖2,當(dāng)α=45°時(shí),連接BD、AE,CMAEM點(diǎn),延長MCBD交于點(diǎn)N.求證:NBD的中點(diǎn).

:(2)問的解答過程無需注明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一商店銷售某種商品,平均每天可售出20件,每件盈利40元.為了擴(kuò)大銷售,增加盈利,該店采取了降價(jià)措施.在每件盈利不少于25元的前提下,經(jīng)過一段時(shí)間銷售,發(fā)現(xiàn)銷售單價(jià)每降低1元,平均每天可多售出2件.

1)若降價(jià)4元,則平均每天銷售數(shù)量為   件;

2)當(dāng)每件商品降價(jià)多少元時(shí),該商店每天銷售利潤為1050元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某居民小區(qū)為了綠化小區(qū)環(huán)境,建設(shè)和諧家園,準(zhǔn)備將一塊周長為76米的長方形空地,設(shè)計(jì)成長和寬分別相等的9塊小長方形,如圖所示,計(jì)劃在空地上種上各種花卉,經(jīng)市場預(yù)測,綠化每平方米空地造價(jià)210元,請(qǐng)計(jì)算,要完成這塊綠化工程,預(yù)計(jì)花費(fèi)多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在一個(gè)不透明的袋子里有1個(gè)紅球,1個(gè)黃球和n個(gè)白球,它們除顏色外其余都相同.

(1)從這個(gè)袋子里摸出一個(gè)球,記錄其顏色,然后放回,搖均勻后,重復(fù)該實(shí)驗(yàn),經(jīng)過大量實(shí)驗(yàn)后,發(fā)現(xiàn)摸到白球的頻率穩(wěn)定于0.5左右,求n的值;

(2)在(1)的條件下,先從這個(gè)袋中摸出一個(gè)球,記錄其顏色,放回,搖均勻后,再從袋中摸出一個(gè)球,記錄其顏色.請(qǐng)用畫樹狀圖或者列表的方法,求出先后兩次摸出不同顏色的兩個(gè)球的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲從商販A處購買了若干斤西瓜又從商販B處購買了若干斤西瓜.A、B兩處所購買的西瓜重量之比為32,然后將買回的西瓜以從A、B兩處購買單價(jià)的平均數(shù)為單價(jià)全部賣給了乙,結(jié)果發(fā)現(xiàn)他賠錢了,這是因?yàn)椋ā 。?/span>

A. 商販A的單價(jià)大于商販B的單價(jià)

B. 商販A的單價(jià)等于商販B的單價(jià)

C. 商版A的單價(jià)小于商販B的單價(jià)

D. 賠錢與商販A、商販B的單價(jià)無關(guān)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,矩形ABCD中,AB=3,AD=9,設(shè)AE=x.將ABE沿BE翻折得到ABE,點(diǎn)A落在矩形ABCD的內(nèi)部,且AA′G=90°,若以點(diǎn)A'、G、C為頂點(diǎn)的三角形是直角三角形,求x的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖1,四邊形ABCD和AEFG是兩個(gè)互相重合的矩形,如圖2將矩形AEFG繞點(diǎn)A按順時(shí)針方向旋轉(zhuǎn)α度(0≤α≤90°),點(diǎn)G恰好落在矩形ABCD的對(duì)角線上,AB與FG相交于點(diǎn)M,連接BE交FG于點(diǎn)N.

(1)當(dāng)AB=AD時(shí),請(qǐng)直接寫出ABE的度數(shù);

(2)當(dāng)ADB=60°時(shí),求ABE的度數(shù);

(3)如圖3,當(dāng)AB=2AD=2時(shí),求點(diǎn)A到直線BE的距離; 直接寫出BMN的周長.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某商店購進(jìn)一種商品,每件商品進(jìn)價(jià)30元試銷中發(fā)現(xiàn)這種商品每天的銷售量y(件)

與每件銷售價(jià)x(元)的關(guān)系數(shù)據(jù)如下:

x

30

32

34

36

y

40

36

32

28

(1)已知y與x滿足一次函數(shù)關(guān)系,根據(jù)上表,求出y與x之間的關(guān)系式(不寫出自變量x的取值范圍);

(2)如果商店銷售這種商品,每天要獲得150元利潤,那么每件商品的銷售價(jià)應(yīng)定為多少元?

(3)設(shè)該商店每天銷售這種商品所獲利潤為w(元),求出w與x之間的關(guān)系式,并求出每件商品銷售價(jià)定為多少元時(shí)利潤最大?

查看答案和解析>>

同步練習(xí)冊答案