如圖,二次函數(shù)y=x2+bx-3b+3的圖象與x軸交于A,B兩點(diǎn)(點(diǎn)A在點(diǎn)B的左邊),交y軸于點(diǎn)C,且經(jīng)過(guò)點(diǎn)(b-2,2b2-5b-1).
(1)求這條拋物線的解析式;
(2)⊙M過(guò)A,B,C三點(diǎn),交y軸于另一點(diǎn)D,求點(diǎn)M的坐標(biāo);
(3)連接AM,DM,將∠AMD繞點(diǎn)M順時(shí)針旋轉(zhuǎn),兩邊MA,MD與x軸,y軸分別交于點(diǎn)E,F(xiàn).若△DMF為等腰三角形,求點(diǎn)E的坐標(biāo).
【答案】分析:(1)將點(diǎn)(b-2,2b2-5b-1)代入拋物線解析式,求出未知數(shù),從而得到拋物線的解析式;
(2)利用垂徑定理及勾股定理,求出點(diǎn)M的坐標(biāo);
(3)首先,證明△AME≌△DMF,從而將“△DMF為等腰三角形”的問(wèn)題,轉(zhuǎn)化為“△AME為等腰三角形”的問(wèn)題;其次,△AME為等腰三角形,可能有三種情形,需要分類(lèi)討論,逐一分析計(jì)算.
解答:解:(1)把點(diǎn)(b-2,2b2-5b-1)代入拋物線解析式,得:
2b2-5b-1=(b-2)2+b(b-2)-3b+3
解得b=2,
故拋物線解析式為y=x2+2x-3.

(2)由x2+2x-3=0,得x=-3或x=1,
∴A(-3,0),B(1,0),C(0,-3).
拋物線的對(duì)稱(chēng)軸為直線x=-1,圓心M在直線x=-1上,
∴設(shè)M(-1,n),作MG⊥x軸于點(diǎn)G,MH⊥y軸于點(diǎn)H,連接MC,MB.
∴MH=1,BG=2.
∵M(jìn)B=MC,∴BG2+MG2=MH2+CH2
∴4+n2=1+(3+n)2
解得n=-1,
∴點(diǎn)M(-1,-1).


(3)如圖,由M(-1,-1),得MG=MH.
∵M(jìn)A=MD,
∴Rt△AMG≌Rt△DMH,∴∠1=∠2.
由旋轉(zhuǎn)可知∠3=∠4,
∴△AME≌△DMF.
若△DMF為等腰三角形,則△AME必為等腰三角形.
設(shè)E(x,0),△AME為等腰三角形,分三種情況:
①AE=AM=,則x=-3,∴E(-3,0);
②∵點(diǎn)M在AB的垂直平分線上,
∴MA=ME=AB,∴E(1,0);
③點(diǎn)E在AM的垂直平分線上,則AE=ME.
AE=x+3,ME2=MG2+EG2=1+(-1-x)2
∴(x+3)2=1+(-1-x)2
解得:x=,∴E(,0).
∴所求點(diǎn)E的坐標(biāo)為(-3,0),(1,0),(,0).
點(diǎn)評(píng):本題是二次函數(shù)綜合題型,考查了二次函數(shù)的圖象與性質(zhì)、垂徑定理、勾股定理、等腰三角形、全等三角形、旋轉(zhuǎn)等知識(shí)點(diǎn),是代數(shù)與幾何的綜合題.第(3)問(wèn)中,注意轉(zhuǎn)化思想以及分類(lèi)討論思想的運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,二次函數(shù)的圖象經(jīng)過(guò)點(diǎn)D(0,
7
9
3
),且頂點(diǎn)C的橫坐標(biāo)為4,該圖象在x軸上截得的線段AB的長(zhǎng)為6.
(1)求二次函數(shù)的解析式;
(2)在該拋物線的對(duì)稱(chēng)軸上找一點(diǎn)P,使PA+PD最小,求出點(diǎn)P的坐標(biāo);
(3)在拋物線上是否存在點(diǎn)Q,使△QAB與△ABC相似?如果存在,求出點(diǎn)Q的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,二次函數(shù)圖象的頂點(diǎn)為坐標(biāo)原點(diǎn)O,且經(jīng)過(guò)點(diǎn)A(3,3),一次函數(shù)的圖象經(jīng)過(guò)點(diǎn)A和點(diǎn)B(6,0).
(1)求二次函數(shù)與一次函數(shù)的解析式;
(2)如果一次函數(shù)圖象與y相交于點(diǎn)C,點(diǎn)D在線段AC上,與y軸平行的直線DE與二次函數(shù)圖象相交于點(diǎn)E,∠CDO=∠OED,求點(diǎn)D的坐標(biāo).
精英家教網(wǎng)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

精英家教網(wǎng)如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸交于B、C兩點(diǎn),與y軸交于點(diǎn)A(0,-3),∠ABC=45°,∠ACB=60°,求這個(gè)二次函數(shù)解析式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

某公司推出了一種高效環(huán)保型洗滌用品,年初上市后,公司經(jīng)歷了從虧損到盈利的過(guò)程,如圖的二次函數(shù)圖象(部分)刻畫(huà)了該公司年初以來(lái)累積利潤(rùn)s(萬(wàn)元)與時(shí)間t(月)之間的關(guān)系(即前t個(gè)月的利潤(rùn)總和s與t之間的關(guān)系).根據(jù)圖象提供的信息,解答下列問(wèn)題:
(1)求累積利潤(rùn)s(萬(wàn)元)與時(shí)間t(月)之間的函數(shù)關(guān)系式;
(2)求截止到幾月末公司累積利潤(rùn)可達(dá)30萬(wàn)元;
(3)從第幾個(gè)月起公司開(kāi)始盈利?該月公司所獲利潤(rùn)是多少萬(wàn)元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

如圖,二次函數(shù)y=ax2+bx+c的圖象與x軸相交于兩個(gè)點(diǎn),根據(jù)圖象回答:(1)b
0(填“>”、“<”、“=”);
(2)當(dāng)x滿足
x<-4或x>2
x<-4或x>2
時(shí),ax2+bx+c>0;
(3)當(dāng)x滿足
x<-1
x<-1
時(shí),ax2+bx+c的值隨x增大而減。

查看答案和解析>>

同步練習(xí)冊(cè)答案