【題目】如圖①,AB為半圓的直徑,O為圓心,C為圓弧上一點,AD垂直于過C點的切線,垂足為D,AB的延長線交直線CD于點E.
(1)求證:AC平分∠DAB;
(2)若AB=4,B為OE的中點,CF⊥AB,垂足為點F,求CF的長;
(3)如圖②,連接OD交AC于點G,若,求sinE的值.
【答案】(1)證明見解析;(2)CF=;(3) sinE=.
【解析】分析:(1)連接OC,由平行線的判定定理、性質(zhì)以及三角形中的等角對等邊的原理即可求證。(2)由(1)中結(jié)論,利用特殊角的三角函數(shù)值可求出∠E=30和CF的長度。(3)連接OC,即可證得△OCG∽△DAG,△OCE∽△DAE,根據(jù)相似三角形的對應(yīng)邊成比例,可得EO與AO的比例關(guān)系,又因為OC=OA,所以在RT△OCE中由三角函數(shù)的定義即可求解。
本題解析:(1)連接OC,如圖①.∵OC切半圓O于C,∴OC⊥DC,又AD⊥CD.∴OC∥AD.∴∠OCA=∠DAC.∵OC=OA,∴∠OAC=∠ACO.∴∠DAC=∠CAO,即AC平分∠DAB.
(2)在Rt△OCE中,∵OC=OB=OE,∴∠E=30°.
∴在Rt△OCF中,CF=OC·sin60°=2×=.
(3)連接OC,如圖②.∵CO∥AD,∴△CGO∽△AGD.∴==.不妨設(shè)CO=AO=3k,則AD=4k.又△COE∽△DAE,∴===.∴EO=9k.在Rt△COE中,sinE===.
【題型】解答題
【結(jié)束】
25
【題目】如圖,有一塊含30°角的直角三角板OAB的直角邊BO的長恰與另一塊等腰直角三角板ODC的斜邊OC的長相等,把這兩塊三角板放置在平面直角坐標(biāo)系中,且OB=3.
(1)若某反比例函數(shù)的圖象的一個分支恰好經(jīng)過點A,求這個反比例函數(shù)的解析式;
(2)若把含30°角的直角三角板繞點O按順時針方向旋轉(zhuǎn)后,斜邊OA恰好落在x軸上,點A落在點A′處,試求圖中陰影部分的面積.(結(jié)果保留π)
【答案】(1)反比例函數(shù)的解析式為y=;(2)S陰影=6π-.
【解析】分析:(1)根據(jù)tan30°=,求出AB,進(jìn)而求出OA,得出A的坐標(biāo),設(shè)過A的雙曲線的解析式是y=,把A的坐標(biāo)代入求出即可;(2)求出∠AOA′,根據(jù)扇形的面積公式求出扇形AOA′的面積,求出OD、DC長,求出△ODC的面積,相減即可求出答案.
本題解析:
(1)在Rt△OBA中,∠AOB=30°,OB=3,
∴AB=OB·tan 30°=3.
∴點A的坐標(biāo)為(3,3).
設(shè)反比例函數(shù)的解析式為y= (k≠0),
∴3=,∴k=9,則這個反比例函數(shù)的解析式為y=.
(2)在Rt△OBA中,∠AOB=30°,AB=3,
sin ∠AOB=,即sin 30°=,
∴OA=6.
由題意得:∠AOC=60°,S扇形AOA′==6π.
在Rt△OCD中,∠DOC=45°,OC=OB=3,
∴OD=OC·cos 45°=3×=.
∴S△ODC=OD2==.
∴S陰影=S扇形AOA′-S△ODC=6π-.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,OA,OD是⊙O半徑.過A作⊙O的切線,交∠AOD的平分線于點C,連接CD,延長AO交⊙O于點E,交CD的延長線于點B.
(1)求證:直線CD是⊙O的切線;
(2)如果D點是BC的中點,⊙O的半徑為 3cm,求的長度.(結(jié)果保留π)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,攔水壩的橫斷面為梯形ABCD,壩頂寬AD=5米,斜坡AB的坡度i=1:3(指坡面的鉛直高度AE與水平寬度BE的比),斜坡DC的坡度i=1:1.5,已知該攔水壩的高為6米.
(1)求斜坡AB的長;
(2)求攔水壩的橫斷面梯形ABCD的周長.(注意:本題中的計算過程和結(jié)果均保留根號)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某校初二開展英語拼寫大賽,愛國班和求知班根據(jù)初賽成績,各選出5名選手參加復(fù)賽,兩個班各選出的5名選手的復(fù)賽成績?nèi)鐖D所示:
(1)根據(jù)圖示填寫下表:
班級 | 中位數(shù)(分) | 眾數(shù)(分) | 平均數(shù)(分) |
愛國班 | 85 | ||
求知班 | 100 | 85 |
(2)結(jié)合兩班復(fù)賽成績的平均數(shù)和中位數(shù),分析哪個班級的復(fù)賽成績比較好?
(3)已知愛國班復(fù)賽成績的方差是70,請求出求知班復(fù)賽成績的方差,并說明哪個班成績比較穩(wěn)定?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察下圖并填表(單位)
梯形個數(shù) | n | |||||||
圖形周長 | ······ |
請通過計算說明第個圖形的周長比第個圖形的周長多多少?
類比推理,直角三角形的三邊長分別是,請直接寫出增加到第個直角三角形時,所得圖形的周長為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,一根長2a的木棍,斜靠在與地面垂直的墻上,設(shè)木棍的中點為若木棍A端沿墻下滑,且B端沿地面向右滑行.
請判斷木棍滑動的過程中,點P到點O的距離是否變化,并簡述理由.
在木棍滑動的過程中,當(dāng)滑動到什么位置時,的面積最大?簡述理由,并求出面積的最大值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2013年3月28日是全國中小學(xué)生安全教育日,某學(xué)校為加強(qiáng)學(xué)生的安全意識,組織了全校1500名學(xué)生參加安全知識競賽,從中抽取了部分學(xué)生成績(得分取正整數(shù),滿分為100分)進(jìn)行統(tǒng)計,請根據(jù)尚未完成的頻率分布表和頻數(shù)分布直方圖,解答下列問題:
頻率分布表 頻數(shù)分布直方圖
(1)這次抽取了名學(xué)生的競賽成績進(jìn)行統(tǒng)計,其中: , ;
(2)補(bǔ)全頻數(shù)分布直方圖;
(3)若成績在70分以下(含70分)的學(xué)生為安全意識不強(qiáng),有待進(jìn)一步加強(qiáng)安全教育,則該校安全意識不強(qiáng)的學(xué)生約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在中,,垂足為,為直線上一動點(不與點重合),在的右側(cè)作,使得,連接.
(1)求證:;
(2)當(dāng)在線段上時
① 求證:≌;
② 若, 則;
(3)當(dāng)CE∥AB時,若△ABD中最小角為20°,試探究∠ADB的度數(shù)(直接寫出結(jié)果)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB是⊙O的直徑,PA、PC與⊙O分別相切于點A、C,PC交AB的延長線于點D.DE⊥PO交PO的延長線于點E.
(1)求證:∠EPD=∠EDO;
(2)若PC=6,tan∠PDA=,求OE的長.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com