【題目】如圖,在△ABC中,O為AC上一點(diǎn),以點(diǎn)O為圓心,OC為半徑做圓,與BC相切于點(diǎn)C,點(diǎn)A作AD⊥BO交BO的延長線于點(diǎn)D,且∠AOD=∠BAD.
(1)求證:AB為⊙O的切線;
(2)若BC=6,tan∠ABC=,求⊙O的半徑和AD的長.
【答案】(1)見解析;(2)3,.
【解析】
(1)作OE⊥AB,先由∠AOD=∠BAD求得∠ABD=∠OAD,再由∠BCO=∠D=90°及∠BOC=∠AOD求得∠OBC=∠OAD=∠ABD,最后證△BOC≌△BOE得OE=OC,依據(jù)切線的判定可得;
(2)先求得∠EOA=∠ABC,在Rt△ABC中求得AC=8、AB=10,由切線長定理知BE=BC=6、AE=4、OE=3,繼而得BO=3,再證△ABD∽△OBC,得,據(jù)此可得答案.
(1)過點(diǎn)O作OE⊥AB于點(diǎn)E,
∵AD⊥BO于點(diǎn)D,
∴∠D=90°,
∴∠BAD+∠ABD=90°,
∠AOD+∠OAD=90°,
∵∠AOD=∠BAD,
∴∠ABD=∠OAD,
又∵BC為⊙O的切線,
∴AC⊥BC,
∴∠BOC=∠D=90°,
∵∠BOC=∠AOD,
∴∠OBC=∠OAD=∠ABD,
∴OE=OC,
∵OE⊥AB,
∴AB是⊙O的切線.
(2)∵∠ABC+∠BAC=90°
∠EOA+∠BAC=90°,
∴∠EOA=∠ABC,
∵tan∠ABC=、BC=6,
∴AC=BCtan∠ABC=8,
則AB=10,
由(1)知BE=BC=6,
∴AE=4,
∵tan∠EOA=tan∠ABC=,
∴OE=3,,
∵∠ABD=∠OBC,∠D=∠ACB=90°,
∴△ABD∽△OBC,
∴,即
∴.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與軸交于點(diǎn)和點(diǎn),對稱軸分別交拋物線和軸于點(diǎn)和點(diǎn),以為底邊向上作等腰.
(1)______;______(用含的代數(shù)式表示);
(2)如圖1,當(dāng)時(shí),連接,求的值;
(3)點(diǎn)是拋物線段上任意一點(diǎn),連接和,延長交對稱軸于點(diǎn),如圖2,若,,三點(diǎn)在一條直線上,當(dāng)時(shí),求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在四邊形ABCD中,AD∥BC,∠C=90°,AB=AD,連接BD,AE⊥BD,垂足為E.
(1)求證:△ABE∽△DBC;
(2)若 AD=25,BC=32,求線段AE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】規(guī)定:如圖1,在平面內(nèi)選一定點(diǎn)O,引一條有方向的射線Ox,再選定一個(gè)單位長度,那么平面上任一點(diǎn)M的位置可由∠MOx的度數(shù)θ與OM的長度m確定,有序數(shù)對(θ,m)稱為M點(diǎn)的“極坐標(biāo)”,在圖2的極坐標(biāo)系下,如果正六邊形的邊長為2,有一邊OA在射線Ox上,則正六邊形的頂點(diǎn)B的極坐標(biāo)應(yīng)記為( )
A.(,30°) B.(60°,)
C.(30°,4) D.(30°,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在直角梯形ABCD中,AB∥CD,AD⊥AB,∠B=60°,AB=10,BC=4,點(diǎn)P沿線段AB從點(diǎn)A向點(diǎn)B運(yùn)動(dòng),設(shè)AP=x.
(1)求AD的長;
(2)點(diǎn)P在運(yùn)動(dòng)過程中,是否存在以A、P、D為頂點(diǎn)的三角形與以P、C、B為頂點(diǎn)的三角形相似?若存在,求出x的值;若不存在,請說明理由;
(3)設(shè)△ADP與△PCB的外接圓的面積分別為S1、S2,若S=S1+S2,求S的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知二次函數(shù)的與的部分對應(yīng)值如下表:
… | -1 | 0 | 1 | 3 | … | |
… | -3 | 1 | 3 | 1 | … |
則下列判斷中正確的是( )
A.拋物線開口向上B.拋物線與軸的交點(diǎn)在軸負(fù)半軸上
C.當(dāng)時(shí),D.方程的正根在3與4之間
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為倡導(dǎo)節(jié)能環(huán)保,降低能源消耗,提倡環(huán)保型新能源開發(fā),造福社會(huì).某公司研發(fā)生產(chǎn)一種新型智能環(huán)保節(jié)能燈,成本為每件40元.市場調(diào)查發(fā)現(xiàn),該智能環(huán)保節(jié)能燈每件售價(jià)y(元)與每天的銷售量為x(件)的關(guān)系如圖,為推廣新產(chǎn)品,公司要求每天的銷售量不少于1000件,每件利潤不低于5元.
(1)求每件銷售單價(jià)y(元)與每天的銷售量為x(件)的函數(shù)關(guān)系式并直接寫出自變量x的取值范圍;
(2)設(shè)該公司日銷售利潤為P元,求每天的最大銷售利潤是多少元?
(3)在試銷售過程中,受國家政策扶持,毎銷售一件該智能環(huán)保節(jié)能燈國家給予公司補(bǔ)貼m(m≤40)元.在獲得國家每件m元補(bǔ)貼后,公司的日銷售利潤隨日銷售量的增大而增大,則m的取值范圍是 (直接寫出結(jié)果).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖①,②分別是某款籃球架的實(shí)物圖和示意圖,已知支架AB的長為2.3m,支架AB與地面的夾角∠BAC=70°,BE的長為1.5m,籃板部支架BD與水平支架BE的夾角為46°,BC、DE垂直于地面,求籃板頂端D到地面的距離.(結(jié)果保留一位小數(shù),參考數(shù)據(jù):sin70°≈0.94,cos70°≈0.34,tan70°≈2.75,sin46°≈0.72,cos46°≈0.69,tan46°≈1.04)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某興趣小組想借助如圖所示的直角墻角(兩邊足夠長),用20m長的籬笆圍成一個(gè)矩形ABCD(籬笆只圍AB,BC兩邊),設(shè)ABxm.
(1)若花園的面積96m2,求x的值;
(2)若在P處有一棵樹與墻CD,AD的距離分別是11m和5m,要將這棵樹圍在花園內(nèi)(含邊界,不考慮樹的粗細(xì)),求花園面積S的最大值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com