【題目】一艘救生船在碼頭A接到小島C處一艘漁船的求救信號,立即出發(fā),沿北偏東67°方向航行10海里到達小島C處,將人員撤離到碼頭A張東方向的碼頭B,測得小島C位于碼頭B西北方向,求碼頭B與小島C的距離(結果精確到0.1海里).【參考數(shù)據(jù):sin23°=0.39,cos23°=0.92,tan23°=0.42, =1.41】

【答案】5.5海里

【解析】試題分析:本題考查了解直角三角形的應用---方向角問題,CDAB,在RtADC中由sin23°= ,求得CD=3.9,在RtBCD中由sin45°= ,求得BC=CD,即可得出答案.

解:過點CCDAB于點D,

由題意,得:∠BAC=23°,ABC=45°,AC=10,

RtADC中,∠ADC=90°,

sin23°==0.39,

CD=10×0.39=3.9,

RtBCD中,∠CDB=90°,

sin45°==,

BC=CD=1.41×3.9=5.4995.5,

答:碼頭B與小島C的距離是5.5海里.

練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

【題目】如圖,觀察每個正多邊形中的變化情況,解答下列問題:

……

(1)將下面的表格補充完整:

正多邊形的邊數(shù)

3

4

5

6

……

的度數(shù)

_________

_________

_________

_________

……

_________

(2)根據(jù)規(guī)律,是否存在一個正邊形,使其中的?若存在,寫出的值;若不存在,請說明理由.

(3)根據(jù)規(guī)律,是否存在一個正邊形,使其中的?若存在,寫出的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,矩形ABCD中,AB=6,BC=8,EAB上一點,且AE=2,MAD上一動點(不與A、D重合),AM=x,連結EM并延長交CD的延長線于F,過MMG⊥EF交直線BC于點G,連結EG、FG.

(1)如圖1,若MAD的中點,求證:①△AEM≌△DFM;②△EFG是等腰三角形;

(2)如圖2,當x為何值時,點G與點C重合?

(3)當x=3時,求△EFG的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】十八屆五中全會出臺了全面實施一對夫婦可生育兩個孩子的政策,這是黨中央站在中華民族長遠發(fā)展的戰(zhàn)略高度作出的促進人口長期均衡發(fā)展的重大舉措.二孩政策出臺后,某家庭積極響應政府號召,準備生育兩個小孩(生男生女機會均等,且與順序有關).

(1)該家庭生育兩胎,假設每胎都生育一個小孩,求這兩個小孩恰好是1男1女的概率;

(2)該家庭生育兩胎,假設第一胎生育一個小孩,且第二胎生育一對雙胞胎,求這三個小孩中至少有1個女孩的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,ABCDEF,CDAFG,

1)如圖1,若CF平分∠AFE,∠A=70°,求∠C;

2)如圖2,請寫出∠A,∠C和∠AFC的數(shù)量關系并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,在ABC中,ABAC,∠A120°,AB的垂直平分線交BCM,交ABE,AC的垂直平分線交BCN,交ACF,若MN2,則NF=___________

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知AC平分∠BAD,CE⊥AB于E,CF⊥AD于F,且BC=CD.

(1)求證:△BCE≌△DCF;

(2)求證:AB+AD=2AE.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】已知關于x的一元二次方程x2(2m1)xm240.

(1)m為何值時,方程有兩個不相等的實數(shù)根?

(2)若邊長為5的菱形的兩條對角線的長分別為方程兩根的2倍,求m的值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】甲、乙兩車從A地駛向B地,并以各自的速度勻速行駛,甲車比乙車早行駛2h,并且甲車途中休息了0.5h,如圖是甲乙兩車行駛的距離y(km)與時間x(h)的函數(shù)圖象.

(1)直接寫出圖中m,a的值;

(2)求出甲車行駛路程y(km)與時間x (h)的函數(shù)解析式,并寫出相應的x的取值范圍;

(3)當乙車出發(fā)多長時間后,兩車恰好相距40km?

查看答案和解析>>

同步練習冊答案