【題目】如圖,在平面直角坐標(biāo)系中,已知的三個(gè)頂點(diǎn)的坐標(biāo)分別為,

1)若經(jīng)過平移后得到,已知點(diǎn)的坐標(biāo)為,寫出頂點(diǎn),的坐標(biāo);

2)若關(guān)于原點(diǎn)成中心對(duì)稱圖形,寫出各頂點(diǎn)的坐標(biāo);

3)將繞著點(diǎn)O按順時(shí)針方向旋轉(zhuǎn)得到,寫出的各頂點(diǎn)的坐標(biāo).

【答案】1,;(2,,;(3,.

【解析】

1)利用點(diǎn)C和點(diǎn)C1的坐標(biāo)變化得到平移的方向與距離,利用此平移規(guī)律寫出頂點(diǎn)A1B1的坐標(biāo);
2)根據(jù)關(guān)于原點(diǎn)對(duì)稱的點(diǎn)的坐標(biāo)特征求解;
3)利用網(wǎng)格和旋轉(zhuǎn)的性質(zhì)畫出A3B3C3,然后寫出A3B3C3的各頂點(diǎn)的坐標(biāo).

解:(1)如圖所示,為所作三角形,

∵△ABC經(jīng)過平移后得到A1B1C1,點(diǎn)C1的坐標(biāo)為(4,0),
∴平移的方向和距離為:向下平移3個(gè)單位,向右平移5個(gè)單位,
,

2)∵△ABCA2B2C2關(guān)于原點(diǎn)O成中心對(duì)稱圖形,

,;

3)如圖,為所作三角形,,.

故答案為:(1,;(2,,;(3,,.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:如圖,△ABC內(nèi)接于⊙O,AF是⊙O的弦,AFBC,垂足為D,點(diǎn)E為弧BF上一點(diǎn),且BE=CF,

(1)求證:AE是⊙O的直徑;

(2)若∠ABC=EAC,AE=8,求AC的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)y=ax2+bx+c(a≠0)的部分圖象如圖所示.

(1)確定二次函數(shù)的解析式;

(2)若方程ax2+bx+c=k有兩個(gè)不相等的實(shí)數(shù)根,求k的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=ax2+bx+ca≠0)與x軸交于(-1,0),(3,0)兩點(diǎn),則下列說法:①abc0;②a-b+c=0;③2a+b=0;④2a+c0;⑤若Ax1,y1),Bx2y2),Cx3y3)為拋物線上三點(diǎn),且-1x1x21x33,則y2y1y3,其中正確的結(jié)論是( 。

A.

B.

C.

D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,一次函數(shù)y=2x+4的圖象與反比例函數(shù)y=k≠0)的圖象交于A,B兩點(diǎn),與x軸交于點(diǎn)C,且點(diǎn)B的橫坐標(biāo)為-3

1)求反比例函數(shù)的解析式;

2)連接AO,求AOC的面積;

3)在AOC內(nèi)(不含邊界),整點(diǎn)(橫縱坐標(biāo)都為整數(shù)的點(diǎn))共有______個(gè).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標(biāo)系中,A6,0),B6,3),畫出ABO的所有以原點(diǎn)O為位似中心的CDO,且CDOABO的相似比為13,并寫出C、D的坐標(biāo).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某一天,小明和小亮來到一河邊,想用遮陽帽和皮尺測(cè)量這條河的大致寬度,兩人在確保無安全隱患的情況下,先在河岸邊選擇了一點(diǎn)B(點(diǎn)B與河對(duì)岸岸邊上的一棵樹的底部點(diǎn)D所確定的直線垂直于河岸).

①小明在B點(diǎn)面向樹的方向站好,調(diào)整帽檐,使視線通過帽檐正好落在樹的底部點(diǎn)D處,如圖所示,這時(shí)小亮測(cè)得小明眼睛距地面的距離AB=1.7米;

②小明站在原地轉(zhuǎn)動(dòng)180°后蹲下,并保持原來的觀察姿態(tài)(除身體重心下移外,其他姿態(tài)均不變),這時(shí)視線通過帽檐落在了DB延長(zhǎng)線上的點(diǎn)E處,此時(shí)小亮測(cè)得BE=9.6米,小明的眼睛距地面的距離CB=1.2米.

根據(jù)以上測(cè)量過程及測(cè)量數(shù)據(jù),請(qǐng)你求出河寬BD是多少米?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在RtABC中,∠C=90°,以AC為直徑作⊙O,交ABD,過點(diǎn)OOEAB,交BCE.

(1)求證:ED為⊙O的切線;

(2)如果⊙O的半徑為,ED=2,延長(zhǎng)EO交⊙OF,連接DF、AF,求ADF的面積.

【答案】(1)證明見解析;(2)

【解析】試題分析:(1)首先連接OD,由OEAB,根據(jù)平行線與等腰三角形的性質(zhì),易證得 即可得,則可證得的切線;
(2)連接CD,根據(jù)直徑所對(duì)的圓周角是直角,即可得 利用勾股定理即可求得的長(zhǎng),又由OEAB,證得根據(jù)相似三角形的對(duì)應(yīng)邊成比例,即可求得的長(zhǎng),然后利用三角函數(shù)的知識(shí),求得的長(zhǎng),然后利用SADF=S梯形ABEF-S梯形DBEF求得答案.

試題解析:(1)證明:連接OD,

OEAB,

∴∠COE=CAD,EOD=ODA

OA=OD,

∴∠OAD=ODA,

∴∠COE=DOE,

在△COE和△DOE中,

∴△COE≌△DOE(SAS),

EDOD

ED的切線;

(2)連接CD,交OEM

RtODE中,

OD=32,DE=2,

OEAB,

∴△COE∽△CAB,

AB=5,

AC是直徑,

EFAB,

SADF=S梯形ABEFS梯形DBEF

∴△ADF的面積為

型】解答
結(jié)束】
25

【題目】【題目】已知,拋物線y=ax2+ax+b(a≠0)與直線y=2x+m有一個(gè)公共點(diǎn)M(1,0),且a<b.

(1)求ba的關(guān)系式和拋物線的頂點(diǎn)D坐標(biāo)(用a的代數(shù)式表示);

(2)直線與拋物線的另外一個(gè)交點(diǎn)記為N,求DMN的面積與a的關(guān)系式;

(3)a=﹣1時(shí),直線y=﹣2x與拋物線在第二象限交于點(diǎn)G,點(diǎn)G、H關(guān)于原點(diǎn)對(duì)稱,現(xiàn)將線段GH沿y軸向上平移t個(gè)單位(t>0),若線段GH與拋物線有兩個(gè)不同的公共點(diǎn),試求t的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】 正方形ABCD與正五邊形EFGHM的邊長(zhǎng)相等,初始如圖所示,將正方形繞點(diǎn)F順時(shí)針旋轉(zhuǎn)使得BCFG重合,再將正方形繞點(diǎn)G順時(shí)針旋轉(zhuǎn)使得CDGH重合按這樣的方式將正方形依次繞點(diǎn)H、ME旋轉(zhuǎn)后,正方形中與EF重合的是( 。

A. ABB. BCC. CDD. DA

查看答案和解析>>

同步練習(xí)冊(cè)答案