【題目】如圖,矩形ABCD中,AB=6,MN在邊AB上運(yùn)動(dòng),MN=3,AP=2,BQ=5,PM+MN+NQ最小值是_____.
【答案】
【解析】
作點(diǎn)P關(guān)于直線(xiàn)AB的對(duì)稱(chēng)點(diǎn)P′,過(guò)點(diǎn)P′G⊥BC,交CB的延長(zhǎng)線(xiàn)與點(diǎn)G,在P′G上截取P′M′=MN=3,連M′Q交AB于點(diǎn)M,過(guò)點(diǎn)P′作P′N(xiāo)∥M′Q交AB于點(diǎn)N,此時(shí)PM+MN+NQ的值最小. 根據(jù)作法可得PM+MN+NQ= P′M ′+ QM ′,由此求得P′M ′、 QM ′的長(zhǎng)即可求解.
如圖,作點(diǎn)P關(guān)于直線(xiàn)AB的對(duì)稱(chēng)點(diǎn)P′,過(guò)點(diǎn)P′G⊥BC,交CB的延長(zhǎng)線(xiàn)與點(diǎn)G,在P′G上截取P′M′=MN=3,連M′Q交AB于點(diǎn)M,過(guò)點(diǎn)P′作P′N(xiāo)∥M′Q交AB于點(diǎn)N,此時(shí)PM+MN+NQ的值最小.
∵P′N(xiāo)∥M′Q,P′M ′∥M N,
∴四邊形P′M ′MN為平行四邊形,
∴P′N(xiāo)= M ′M,P′M ′=MN=3,
由軸對(duì)稱(chēng)的性質(zhì)可得PN= P′N(xiāo),AP=A P′=2,
∴PM+MN+NQ= P′M ′+ QM ′,
∵AB= P′G=3,P′M ′=3,AP′=GB=2,
∴GM ′= 3,GQ=7,
在Rt△GQM P′中,由勾股定理可得,QM ′=.
∴PM+MN+NQ= P′M ′+ QM ′=.
故答案為:.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在中,,,點(diǎn)在線(xiàn)段上運(yùn)動(dòng)(不與、重合),連接,作,交線(xiàn)段于.
(1)當(dāng)時(shí),______________;點(diǎn)從向運(yùn)動(dòng)時(shí),逐漸變____________(填“大”或“小”);
(2)當(dāng)時(shí),求證:,請(qǐng)說(shuō)明理由;
(3)在點(diǎn)的運(yùn)動(dòng)過(guò)程中,的形狀也在改變,判斷當(dāng)等于多少度時(shí),是等腰三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某商店購(gòu)進(jìn)一種商品,每件商品進(jìn)價(jià)30元.試銷(xiāo)中發(fā)現(xiàn)這種商品每天的銷(xiāo)售量y(件)
與每件銷(xiāo)售價(jià)x(元)的關(guān)系數(shù)據(jù)如下:
x | 30 | 32 | 34 | 36 |
y | 40 | 36 | 32 | 28 |
(1)已知y與x滿(mǎn)足一次函數(shù)關(guān)系,根據(jù)上表,求出y與x之間的關(guān)系式(不寫(xiě)出自變量x的取值范圍);
(2)如果商店銷(xiāo)售這種商品,每天要獲得150元利潤(rùn),那么每件商品的銷(xiāo)售價(jià)應(yīng)定為多少元?
(3)設(shè)該商店每天銷(xiāo)售這種商品所獲利潤(rùn)為w(元),求出w與x之間的關(guān)系式,并求出每件商品銷(xiāo)售價(jià)定為多少元時(shí)利潤(rùn)最大?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知、分別為的直徑和弦,為 的中點(diǎn),垂直于的延長(zhǎng)線(xiàn)于,連接,若,,下列結(jié)論一定錯(cuò)誤的是( )
A. DE是⊙O的切線(xiàn) B. 直徑AB長(zhǎng)為20cm
C. 弦AC長(zhǎng)為16cm D. C為 的中點(diǎn)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知、、分別是上的點(diǎn),,是直徑的延長(zhǎng)線(xiàn)上的一點(diǎn),且.
(1)求證:與相切;
(2)如果,求的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校組織“大手拉小手,義賣(mài)獻(xiàn)愛(ài)心”活動(dòng),計(jì)劃購(gòu)買(mǎi)黑白兩種顏色的文化衫進(jìn)行手繪設(shè)計(jì)后出售,并將所獲利潤(rùn)全部捐給山區(qū)困難孩子.已知該學(xué)校從批發(fā)市場(chǎng)花4800元購(gòu)買(mǎi)了 黑白兩種顏色的文化衫200件,每件文化衫的批發(fā)價(jià)及手繪后的零售價(jià)如表:
批發(fā)價(jià)(元) | 零售價(jià)(元) | |
黑 色 文化衫 | 25 | 45 |
白 色 文 化 衫 | 20 | 35 |
(1)學(xué)校購(gòu)進(jìn)黑.白文化衫各幾件?
(2)通過(guò)手繪設(shè)計(jì)后全部售出,求該校這次義賣(mài)活動(dòng)所獲利潤(rùn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知矩形ABCD,AD=4,CD=10,P是AB上一動(dòng)點(diǎn),M、N、E分別是PD、PC、CD的中點(diǎn).
(1)求證:四邊形PMEN是平行四邊形;
(2)請(qǐng)直接寫(xiě)出當(dāng)AP為何值時(shí),四邊形PMEN是菱形;
(3)四邊形PMEN有可能是矩形嗎?若有可能,求出AP的長(zhǎng);若不可能,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,拋物線(xiàn)與軸相交于點(diǎn),與過(guò)點(diǎn)平行于軸的直線(xiàn)相交于點(diǎn)(點(diǎn)在第二象限),拋物線(xiàn)的頂點(diǎn)在直線(xiàn)上,且點(diǎn)為的中點(diǎn),對(duì)稱(chēng)軸與軸相交于點(diǎn),平移拋物線(xiàn),使其經(jīng)過(guò)點(diǎn)、,則平移后的拋物線(xiàn)的解析式為________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,等邊中,,是高所在直線(xiàn)上的一個(gè)動(dòng)點(diǎn),連接,將線(xiàn)段繞點(diǎn)逆時(shí)針旋轉(zhuǎn)60°得到,連接.在點(diǎn)運(yùn)動(dòng)過(guò)程中,線(xiàn)段長(zhǎng)度的最小值是( )
A.12B.9C.6D.3
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com