如圖,點(diǎn)O是等腰直角三角形ABC內(nèi)一點(diǎn),∠ACB=90°,∠AOB=140°,∠AOC=α.將△AOC繞頂點(diǎn)C按順時(shí)針方向旋轉(zhuǎn)90°得△BDC,連接OD.

(1)試說明△COD是等腰直角三角形;

(2)當(dāng)α=95°時(shí),試判斷△BOD的形狀,并說明理由.

答案:
解析:

  解:(1)∵△AOC繞頂點(diǎn)C按順時(shí)針方向旋轉(zhuǎn)90°得△BDC,

  ∴∠OCD=90°,CO=CD,

  ∴△COD是等腰直角三角形.

  (2)△BOD為等腰三角形.

  理由如下:

  ∵△COD是等腰直角三角形,

  ∴∠COD=∠CDO=45°,

  而∠AOB=140°,α=95°,∠BDC=95°,

  ∴∠BOD=360°-140°-95°-45°=80°,

  ∠BDO=95°-45°=50°,

  ∴∠OBD=180°-80°-50°=50°.

  ∴△BOD為等腰三角形.


練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)已知:如圖,點(diǎn)O是等腰直角△ABC斜邊AB的中點(diǎn),D為BC邊上任意一點(diǎn).
操作:在圖中作OE⊥OD交AC于E,連接DE.
問題:(1)觀察并猜測(cè),無論∠DOE繞著點(diǎn)O旋轉(zhuǎn)到任何位置,OD和OE始終有何數(shù)量關(guān)系?(直接寫出答案)
 

(2)如圖所示,若BD=2,AE=4,求△DOE的面積.
(說明:如果經(jīng)過思考分析,沒有找到解決(2)中的問題的方法,請(qǐng)直接驗(yàn)證(1)中猜測(cè)的結(jié)論)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

27、附加題:已知:如圖,點(diǎn)O是等腰直角△ABC斜邊AB的中點(diǎn),D為BC邊上任意一點(diǎn).
操作:在圖12中作OE⊥OD交AC于E,連接DE.
探究OD、BD、CD三條線段之間有何等量關(guān)系?請(qǐng)?zhí)骄空f明.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

28、如圖,點(diǎn)O是等腰直角三角形ABC內(nèi)一點(diǎn),∠ACB=90°,∠AOB=140°,∠AOC=α.將△AOC繞直角頂點(diǎn)C按順時(shí)針方向旋轉(zhuǎn)90°得△BDC,連接OD.
(1)試說明△COD是等腰直角三角形;
(2)當(dāng)α=95°時(shí),試判斷△BOD的形狀,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

11、如圖,點(diǎn)D是等腰直角△ABC斜邊AB上的點(diǎn),將△ACD繞點(diǎn)C逆時(shí)針旋轉(zhuǎn),使它與△BCD′重合,則∠D′BA=
90
度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:解答題

如圖,點(diǎn)O是等腰直角三角形ABC內(nèi)一點(diǎn),∠ACB=90°,∠AOB=140°,∠AOC=α.將△AOC繞直角頂點(diǎn)C按順時(shí)針方向旋轉(zhuǎn)90°得△BDC,連接OD.
(1)試說明△COD是等腰直角三角形;
(2)當(dāng)α=95°時(shí),試判斷△BOD的形狀,并說明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案