【題目】(問題情境)定義:如圖1,點(diǎn)E在四邊形ABCD的邊CD上,若AE、BE將四邊形ABCD分割成三個(gè)相似的三角形,則稱點(diǎn)E為該四邊形的相似點(diǎn).
(1)若相似點(diǎn)在四邊形ABCD的邊CD上, 且AE、BE將四邊形ABCD分割成三個(gè)正三角形,則四邊形ABCD的四邊形之比(按邊長從小到大排序)為_______.
(2)若相似點(diǎn)在四邊形ABCD的邊CD上,且AE、BE將四邊形ABCD分割成三個(gè)全等的等腰直角三角形,則四邊形ABCD的四邊形之比(按邊長從小到大排序)為_______.
(3)(探索研究)
如圖2,點(diǎn)E為四邊形ABCD邊上的相似點(diǎn),且AE、BE將四邊形ABCD分割成三個(gè)全等的三角形,已知∠ABC=90°,AD=AB=BC=2,求邊CD的長.
(4)(問題解決)
如圖3,在四邊形ABCD中,AB∥CD,點(diǎn)E為四邊形ABCD的邊CD上的相似點(diǎn),且AD=a,AB=b,BC=c(其中a≠c),此時(shí)邊CD的長為多少?請(qǐng)用含a、b、c的代數(shù)式直接寫出所有可能的結(jié)果.
【答案】(1)四邊長度的比為1:1:1:2;(2)四邊之比為1:1::2;(3)CD=;(4)CD=
【解析】
(1)根據(jù)相似點(diǎn)的定義以及分成三個(gè)正三角形得出這三個(gè)三角形全等,從而得出邊之比;
(2)根據(jù)等腰直角三角形邊之間的關(guān)系為設(shè)參數(shù)即可得出答案;
(3)根據(jù)全等以及尋找出特殊角度的三角形再進(jìn)行求解;
(4)根據(jù)和相似點(diǎn)的定義判斷出四邊形是平行四邊形,從而得出,再根據(jù)對(duì)應(yīng)邊成比例計(jì)算,從而得出答案.
(1)∵均為正三角形,且三個(gè)三角形相似
∴這三個(gè)三角形全等
設(shè)
∴則
∴四邊長度的比為
(2)∵三個(gè)三角形為等腰直角三角形
∴設(shè),則
∴四邊之比為
(3)過點(diǎn)A作AF⊥DE如圖:
∵
∴
∴在直角三角形中:
在直角三角形中,,
∴=++=
(4)∵
根據(jù)相似點(diǎn)的含義可知,
∴,,
∵
∴四邊形是平行四邊形
∴
∴
∴
∴
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:如圖,在平行四邊形中,對(duì)角線與相交于點(diǎn),過點(diǎn)作的垂線交邊于點(diǎn),與的延長線交于點(diǎn),且.
求證:(1)四邊形是矩形;
(2).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,∠A=∠B,AE=BE,點(diǎn)D在AC邊上,∠1=∠2,AE和BD相交于點(diǎn)O.
(1)求證:△AEC≌△BED;
(2)若∠1=42°,求∠BDE的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線交x軸于A,B兩點(diǎn),交y軸于點(diǎn)C.直線經(jīng)過點(diǎn)A,C.
(1)求拋物線的解析式;
(2)點(diǎn)P是拋物線上一動(dòng)點(diǎn),過點(diǎn)P作x軸的垂線,交直線AC于點(diǎn)M,設(shè)點(diǎn)P的橫坐標(biāo)為m.
①當(dāng)是直角三角形時(shí),求點(diǎn)P的坐標(biāo);
②作點(diǎn)B關(guān)于點(diǎn)C的對(duì)稱點(diǎn),則平面內(nèi)存在直線l,使點(diǎn)M,B,到該直線的距離都相等.當(dāng)點(diǎn)P在y軸右側(cè)的拋物線上,且與點(diǎn)B不重合時(shí),請(qǐng)直接寫出直線的解析式.(k,b可用含m的式子表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為弘揚(yáng)祖國優(yōu)秀傳統(tǒng)文化,加強(qiáng)優(yōu)秀文化熏陶,提高學(xué)生的文化素養(yǎng)和道德素質(zhì),我縣某校舉行了“經(jīng)典啟迪人生,國學(xué)伴我成長”主題活動(dòng),學(xué)校統(tǒng)一印制獨(dú)具本校特色的國學(xué)教育校本教材,通過課堂教學(xué)和課外活動(dòng)相結(jié)合的方式進(jìn)行國學(xué)教育,為了解學(xué)生學(xué)習(xí)成果,現(xiàn)隨機(jī)抽取了部分同學(xué)的國學(xué)成績(x為整數(shù),總分100分),繪制了如下尚不完整的統(tǒng)計(jì)圖表.調(diào)查結(jié)果扇形統(tǒng)計(jì)圖.
組別 | 成績分組(單位:分) | 頻數(shù) | 頻率 |
A | 50≤x<60 | 40 | 0.10 |
B | 60≤x<70 | 60 | c |
C | 70≤x<80 | a | 0.20 |
D | 80≤x<90 | 160 | 0.40 |
E | 90≤x<100 | 60 | 0.15 |
合計(jì) | b | 1 |
(1)根據(jù)以上信息解答問題:(1)統(tǒng)計(jì)表中a=________,b= ________,c=_______.
(2)扇形統(tǒng)計(jì)圖中,m的值為________,“D”所對(duì)應(yīng)的圓心角的度數(shù)是_______度;
(3)若參加國學(xué)教育的同學(xué)共有2000人,請(qǐng)你估計(jì)成績?cè)?/span>90分及以上的學(xué)生大約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC和△ADE分別是以BC,DE為底邊且頂角相等的等腰三角形,點(diǎn)D在線段BC上,AF平分DE交BC于點(diǎn)F,連接BE,EF.
(1)CD與BE相等?若相等,請(qǐng)證明;若不相等,請(qǐng)說明理由;
(2)若∠BAC=90°,求證:BF2+CD2=FD2.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線與軸相交于點(diǎn),與軸相交于、兩點(diǎn),點(diǎn)是線段上的一個(gè)動(dòng)點(diǎn),過作軸交于點(diǎn),交拋物線于點(diǎn)(點(diǎn)在點(diǎn)的左側(cè)).
(1)求拋物線的解析式.
(2)當(dāng)四邊形是平行四邊形時(shí),求點(diǎn)的坐標(biāo).
(3)設(shè)的面積為,的面積為,當(dāng)時(shí),求的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,拋物線y=ax2+x+c與x軸交于點(diǎn)A(6,0),C(﹣2,0),與y軸交于點(diǎn)B,拋物線的頂點(diǎn)為D,對(duì)稱軸交AB于點(diǎn)E,交x軸于點(diǎn)F.
(1)求拋物線的解析式;
(2)P是拋物線上對(duì)稱軸左側(cè)一點(diǎn),連接EP,若tan∠BEP=,求點(diǎn)P的坐標(biāo);
(3)M是直線CD上一點(diǎn),N是拋物線上一點(diǎn),試判斷是否存在這樣的點(diǎn)N,使得以點(diǎn)B,E,M,N為頂點(diǎn)的四邊形是平行四邊形,若存在,請(qǐng)直接寫出點(diǎn)N的坐標(biāo),若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在矩形ABCD中,E 是AB 上的一點(diǎn),連接DE,過點(diǎn)A作AF⊥DE,垂直為F.圓O經(jīng)過點(diǎn)C ,D ,F,且與AD相交于點(diǎn)G.
(1)求證,△AFG∽△DFC;
(2)若AB=3,BC=5,AE=1,求圓O的半徑.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com