【題目】如圖,射線BD是∠MBN的平分線,點A、C分別是角的兩邊BM、BN上兩點,且AB=BC,E是線段BC上一點,線段EC的垂直平分線交射線BD于點F,連結(jié)AE交BD于點G,連結(jié)AF、EF、FC.
(1)求證:AF=EF;
(2)求證:△AGF∽△BAF;
(3)若點P是線段AG上一點,連結(jié)BP,若∠PBG=∠BAF,AB=3,AF=2,求.
【答案】(1)見解析;
(2)見解析;
(3)=
【解析】
試題分析:(1)由于EF=CF,要證AF=EF,只需證FA=FC,只需證△ABF≌△CBF即可;
(2)由于∠AFG=∠BFA,要證△AGF∽△BAF,只需證∠FAE=∠ABF,易得∠FAE=∠FEA,∠ABF=∠CBF,只需證∠ABC+∠AFE=180°,只需證∠BAF+∠BEF=180°,只需證到∠BAF=∠FEC即可;
(3)由△AGF∽△BAF可得∠BAF=∠AGF,=,易證△BGE∽△AGF,則有=,由條件∠PBG=∠BAF可得∠PBG=∠AGF,由此可得∠BPG=∠PBG,即可得到BG=PG,問題得以解決.
試題解析: (1)∵BF平分∠ABC,
∴∠ABF=∠CBF.
在△ABF和△CBF中,
BA=BC, ∠ABF=∠CBF,BF=BF,
∴△ABF≌△CBF,
∴AF=CF.
∵點F在EC的垂直平分線上,
∴EF=CF,
∴AF=EF;
(2)∵△ABF≌△CBF,
∴∠BAF=∠BCF.
∵FE=FC,
∴∠FEC=∠FCE,
∴∠BAF=∠FEC.
∵∠BEF+∠FEC=180°,
∴∠BAF+∠BEF=180°.
∵∠BAF+∠ABE+∠BEF+∠AFE=360°,
∴∠ABE+∠AFE=180°.
∵FA=FE,
∴∠FAE=∠FEA.
∵∠AFE+∠FAE+∠FEA=180°,
∴∠ABE=∠FAE+∠FEA=2∠FAE.
又∵∠ABE=2∠ABF,
∴∠FAE=∠ABF.
∵∠AFG=∠BFA,
∴△AGF∽△BAF;
(3)∵△AGF∽△BAF,
∴∠AGF=∠BAF,.
∵∠PBG=∠BAF,AB=3,AF=2,
∴∠PBG=∠AGF,=,
∴∠BPG=∠PBG,=,
∴PG=BG,
∴.
∵∠GAF=∠ABF=∠EBF,∠AGF=∠BGE,
∴△BGE∽△AGF,
∴=,
∴=.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知關(guān)于x,y的方程組,則下列結(jié)論中正確的是( )
①當(dāng)a=5時,方程組的解是;
②當(dāng)x,y的值互為相反數(shù)時,a=20;
③不存在一個實數(shù)a使得x=y;
④若,則a=2.
A. ①②③④ B. ②③ C. ②③④ D. ②③④
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】問題背景:
如圖1,△ABC為等邊三角形,作AD⊥BC于點D,將∠ABC繞點B順時針旋轉(zhuǎn)30°后,BA,BC邊與射線AD分別交于點E,F,求證:△BEF為等邊三角形.
遷移應(yīng)用:
如圖2,△ABC為等邊三角形,點P是△ABC外一點,∠BPC=60°,將∠BPC繞點P逆時針旋轉(zhuǎn)60°后,PC邊恰好經(jīng)過點A,探究PA,PB,PC之間存在的數(shù)量關(guān)系,并證明你的結(jié)論;
拓展延伸:
如圖3,在菱形ABCD中,∠ABC=60°,將∠ABC繞點B順時針旋轉(zhuǎn)到如圖所在的位置得到∠MBN,F(xiàn)是BM上一點,連接AF,DF,DF交BN于點E,若B,E兩點恰好關(guān)于直線AF對稱.
(1)證明△BEF是等邊三角形;
(2)若DE=6,BE=2,求AF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】正方形A1B1C1O、A2B2C2C1、A3B3C3C2、……按如圖的方式放置,點A1、A2、A3……和點C1、C2、C3……分別在直線y=x+1和x軸上,則點B6的坐標(biāo)是( )
A. (31,16) B. (63,32) C. (15,8) D. (31,32)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖在Rt△ABC中,∠ACB=90°,D是邊AB的中點,BE⊥CD,垂足為點E.已知AC=15,cosA=.
(1)求線段CD的長;
(2)求sin∠DBE的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平行四邊形ABCD中,M、N分別是邊AD、BC邊上的中點,且△ABM≌△DCM;E、F分別是線段BM、CM的中點.
(1)求證:平行四邊形ABCD是矩形.
(2)求證:EF與MN互相垂直.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)如圖1,數(shù)軸上表示1、的對應(yīng)點分別為A、B,點C在OA上,且AC=AB,試求點C所表示的實數(shù).
(2)如圖2,數(shù)軸的正半軸上有A、B、C三點,表示1和的對應(yīng)點分別為A、B,點B到點A的距離與點C到點O的距離相等,設(shè)點C所表示的數(shù)為x.求(x﹣)2的立方根.
(3)如圖3,a,b,c是數(shù)軸上三個點A、B、C所對應(yīng)的實數(shù).(|c|>|b|>|a|),試化簡:.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某電信公司有甲、乙兩種手機收費業(yè)務(wù),僅上網(wǎng)流量收費不同,圖中I1、I2分別表示甲、乙兩種業(yè)務(wù)每月流量費用y(元)與上網(wǎng)流量xGB的之間的函數(shù)關(guān)系。
(1)分別求出甲、乙兩種業(yè)務(wù)每月所收費用y元與上網(wǎng)流量xGB之間的函數(shù)關(guān)系式。
(2)已知劉老師選擇了甲業(yè)務(wù),魏老師選擇了乙業(yè)務(wù),上月兩位老師所用流量相同,均為mGB,上網(wǎng)流量費用相差不到20元,求m的取值范圍。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】觀察算式:1×3+1=4=22;2×4+1=9=32;3×5+1=16=42;4×6+1=25=52,…
(1)請根據(jù)你發(fā)現(xiàn)的規(guī)律填空:6×8+1=( )2;
(2)用含n的等式表示上面的規(guī)律: ;
(3)用找到的規(guī)律解決下面的問題:
計算:(1+)(1+)(1+)(1+)…(1+)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com