如圖,若正方形ABCD的四個頂點恰好分別在四條平行線l1、l2、l3、l4上,設這四條直線中相鄰兩條之間的距離依次為h1、h2、h3(h1>0,h2>0,h3>0).
(1)求證:h1=h3;
(2)現(xiàn)在平面直角坐標系內有四條直線l1、l2、l3、x軸,且l1∥l2∥l3∥x軸,若相鄰兩直線間的距離為1,2,1,點A(4,4)在l1,能否在l2、l3、x軸上各找一點B、C、D,使以這四個點為頂點的四邊形為正方形,若能,請直接寫出B、C、D的坐標;若不能,請說明理由。
⑴證明過程見解析,⑵能,B(1,3),C(2,0),D(5,1)或B’(7,3),C’(6,0),D’(3,1)
解析:(1)過A點作AF⊥l3分別交l2、l3于點E、F,過C點作CG⊥l3交l3于點G,
∵l2∥l3,∴∠2 =∠3,
∵∠1+∠2=90°,∠4+∠3=90°,∴∠1=∠4,-------------------1分
在ΔABE和ΔCDG中,
-------------3分
∴△ABE≌△CDG,∴AE=CG,即=.-------------4分
(2)可以在l1、l2、l3、l4上找點B,C,D,使四邊形ABCD為正方形.
具體畫法:
1.在l1上截取AE=1+2=3,過點E作l1的垂線,交l2于點B,交x軸于點F;
2.在x軸上截取FC=1
3.在l1上截取AG=1,過G作l1的垂線交l3于點D,
4連接AB,BC,CD,DA則四邊形ABCD為正方形.
其中B(1,3),C(2,0),D(5,1)或B’(7,3),C’(6,0),D’(3,1)------7分
(1)過A點作AF⊥l3分別交l2、l3于點E、F,過C點作CG⊥l3交l3于點G,求得△ABE≌△CDG,可證明,(2)可以在l1、l2、l3、l4上找點B,C,D,使四邊形ABCD為正方形
科目:初中數學 來源: 題型:
查看答案和解析>>
科目:初中數學 來源: 題型:
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源:江蘇期中題 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com