(2012•鐵嶺)已知:在直角梯形ABCD中,AD∥BC,∠C=90°,AB=AD=25,BC=32.連接BD,AE⊥BD垂足為E.
(1)求證:△ABE∽△DBC;
(2)求線段AE的長.
分析:(1)由等腰三角形的性質(zhì)可知∠ABD=∠ADB,由AD∥BC可知,∠ADB=∠DBC,由此可得∠ABD=∠DBC,又∵∠AEB=∠C=90°,利用“AA”可證△ABE∽△DBC;
(2)由等腰三角形的性質(zhì)可知,BD=2BE,根據(jù)△ABE∽△DBC,利用相似比求BE,在Rt△ABE中,利用勾股定理求AE.
解答:(1)證明:∵AB=AD=25,
∴∠ABD=∠ADB,
∵AD∥BC,
∴∠ADB=∠DBC,
∴∠ABD=∠DBC,
∵AE⊥BD,
∴∠AEB=∠C=90°,
∴△ABE∽△DBC;

(2)解:∵AB=AD,又AE⊥BD,
∴BE=DE,
∴BD=2BE,
由△ABE∽△DBC,
AB
BD
=
BE
BC
,
∵AB=AD=25,BC=32,
25
2BE
=
BE
32

∴BE=20,
∴AE=
AB2-BE2
=
252-202
=15
點評:本題考查了相似三角形的判定與性質(zhì).關(guān)鍵是要懂得找相似三角形,利用相似三角形的性質(zhì)及勾股定理解題.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

(2012•鐵嶺)已知點P(-1,2)在反比例函數(shù)y=
kx
(k≠0)的圖象上,請任意寫出此函數(shù)圖象上一個點(不同于P點)的坐標是
(1,-2)答案不唯一
(1,-2)答案不唯一

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•鐵嶺)已知圓錐的高是12,底面圓的半徑為5,則這個圓錐的側(cè)面展開圖的周長為
26+10π
26+10π

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•鐵嶺)如圖,已知拋物線經(jīng)過原點O和x軸上一點A(4,0),拋物線頂點為E,它的對稱軸與x軸交于點D.直線y=-2x-1經(jīng)過拋物線上一點B(-2,m)且與y軸交于點C,與拋物線的對稱軸交于點F.
(1)求m的值及該拋物線對應的解析式;
(2)P(x,y)是拋物線上的一點,若S△ADP=S△ADC,求出所有符合條件的點P的坐標;
(3)點Q是平面內(nèi)任意一點,點M從點F出發(fā),沿對稱軸向上以每秒1個單位長度的速度勻速運動,設點M的運動時間為t秒,是否能使以Q、A、E、M四點為頂點的四邊形是菱形?若能,請直接寫出點M的運動時間t的值;若不能,請說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

(2012•鐵嶺)已知△ABC是等邊三角形.
(1)將△ABC繞點A逆時針旋轉(zhuǎn)角θ(0°<θ<180°),得到△ADE,BD和EC所在直線相交于點O.       
①如圖a,當θ=20°時,△ABD與△ACE是否全等?
(填“是”或“否”),∠BOE=
120
120
度;
②當△ABC旋轉(zhuǎn)到如圖b所在位置時,求∠BOE的度數(shù);
(2)如圖c,在AB和AC上分別截取點B′和C′,使AB=
3
AB′,AC=
3
AC′,連接B′C′,將△AB′C′繞點A逆時針旋轉(zhuǎn)角(0°<θ<180°),得到△ADE,BD和EC所在直線相交于點O,請利用圖c探索∠BOE的度數(shù),直接寫出結(jié)果,不必說明理由.

查看答案和解析>>

同步練習冊答案