(2012•鐵嶺)已知圓錐的高是12,底面圓的半徑為5,則這個(gè)圓錐的側(cè)面展開圖的周長(zhǎng)為
26+10π
26+10π
分析:利用勾股定理易得圓錐的母線長(zhǎng),圓錐周長(zhǎng)=弧長(zhǎng)+2母線長(zhǎng).
解答:解:∵圓錐的底面半徑是5,高是12,
∴圓錐的母線長(zhǎng)為13,
∴這個(gè)圓錐的側(cè)面展開圖的周長(zhǎng)=2×13+2π×5=26+10π.
故答案為26+10π.
點(diǎn)評(píng):考查圓錐的計(jì)算;掌握?qǐng)A錐的側(cè)面積的計(jì)算公式是解決本題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•鐵嶺)已知點(diǎn)P(-1,2)在反比例函數(shù)y=
kx
(k≠0)的圖象上,請(qǐng)任意寫出此函數(shù)圖象上一個(gè)點(diǎn)(不同于P點(diǎn))的坐標(biāo)是
(1,-2)答案不唯一
(1,-2)答案不唯一

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•鐵嶺)已知:在直角梯形ABCD中,AD∥BC,∠C=90°,AB=AD=25,BC=32.連接BD,AE⊥BD垂足為E.
(1)求證:△ABE∽△DBC;
(2)求線段AE的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•鐵嶺)如圖,已知拋物線經(jīng)過(guò)原點(diǎn)O和x軸上一點(diǎn)A(4,0),拋物線頂點(diǎn)為E,它的對(duì)稱軸與x軸交于點(diǎn)D.直線y=-2x-1經(jīng)過(guò)拋物線上一點(diǎn)B(-2,m)且與y軸交于點(diǎn)C,與拋物線的對(duì)稱軸交于點(diǎn)F.
(1)求m的值及該拋物線對(duì)應(yīng)的解析式;
(2)P(x,y)是拋物線上的一點(diǎn),若S△ADP=S△ADC,求出所有符合條件的點(diǎn)P的坐標(biāo);
(3)點(diǎn)Q是平面內(nèi)任意一點(diǎn),點(diǎn)M從點(diǎn)F出發(fā),沿對(duì)稱軸向上以每秒1個(gè)單位長(zhǎng)度的速度勻速運(yùn)動(dòng),設(shè)點(diǎn)M的運(yùn)動(dòng)時(shí)間為t秒,是否能使以Q、A、E、M四點(diǎn)為頂點(diǎn)的四邊形是菱形?若能,請(qǐng)直接寫出點(diǎn)M的運(yùn)動(dòng)時(shí)間t的值;若不能,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

(2012•鐵嶺)已知△ABC是等邊三角形.
(1)將△ABC繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)角θ(0°<θ<180°),得到△ADE,BD和EC所在直線相交于點(diǎn)O.       
①如圖a,當(dāng)θ=20°時(shí),△ABD與△ACE是否全等?
(填“是”或“否”),∠BOE=
120
120
度;
②當(dāng)△ABC旋轉(zhuǎn)到如圖b所在位置時(shí),求∠BOE的度數(shù);
(2)如圖c,在AB和AC上分別截取點(diǎn)B′和C′,使AB=
3
AB′,AC=
3
AC′,連接B′C′,將△AB′C′繞點(diǎn)A逆時(shí)針旋轉(zhuǎn)角(0°<θ<180°),得到△ADE,BD和EC所在直線相交于點(diǎn)O,請(qǐng)利用圖c探索∠BOE的度數(shù),直接寫出結(jié)果,不必說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案