【題目】如圖,D為△ABC內(nèi)一點,且AD =BD,若∠ACD=∠DAB=45°,AC=5,則SABC=_______

【答案】

【解析】分析DFDCDACF,連接BF可證△ADC≌△BDF,得到∠ACD=∠BFD=45°,AC=BF,由∠CFD=45°,得到∠BFC=90°,SABC=ACBF即可得到結(jié)論

詳解DFDCDACF,連接BF

∵∠ACD=45°,∴∠CFD=45°,∴FD=CD

∵∠CDF=∠ADB=90°,∴∠CDA=∠FDB

在△ADC和△BDF中,∵CD=DF,∠CDA=∠FDB,AD=DB,∴△ADC≌△BDF,∴∠ACD=∠BFD=45°,AC=BF

∵∠CFD=45°,∴∠BFC=90°,∴BFAC,∴SABC=ACBF=×5×5=故答案為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的弦,D為半徑OA的中點,過DCDOA交弦AB于點E,交⊙O于點F,且CE=CB

1)求證:BC是⊙O的切線;

2)連接AF,BF,求∠ABF的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,拋物線y=﹣x2+2x+3與x軸相交于A、B兩點(點A在點B的左側(cè)),與y軸相交于點C,頂點為D.

(1)直接寫出A、B、C三點的坐標(biāo)和拋物線的對稱軸;

(2)連接BC,與拋物線的對稱軸交于點E,點P為線段BC上的一個動點,過點P作PFDE交拋物線于點F,設(shè)點P的橫坐標(biāo)為m;

①用含m的代數(shù)式表示線段PF的長,并求出當(dāng)m為何值時,四邊形PEDF為平行四邊形?

②設(shè)BCF的面積為S,求S與m的函數(shù)關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖甲、乙兩船從港口A同時出發(fā),甲船以30海里/時的速度向北偏東35°的方向航行乙船以40海里/時的速度向另一方向航行,2小時后,甲船到達C乙船到達B,C,B兩島相距100海里,則乙船航行的方向是南偏東多少度?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】某單位招聘員工,采取筆試與面試相結(jié)合的方式進行,兩項成績的原始分均為100分.前6名選手的得分如下:

根據(jù)規(guī)定,筆試成績和面試成績分別按一定的百分比折和成綜合成績(綜合成績的滿分仍為100分)

1)這6名選手筆試成績的中位數(shù)是   分,眾數(shù)是   分.

2)現(xiàn)得知1號選手的綜合成績?yōu)?/span>88分,求筆試成績和面試成績各占的百分比.

3)求出其余五名選手的綜合成績,并以綜合成績排序確定前兩名人選.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形A1B1C1O,A2B2C2C1,A3B3C3C2,…按如圖所示的方式放置.點A1,A2,A3,…和點C1,C2,C3,…分別在直線 (k>0)和x軸上,已知點B1(1,1),B2(3,2),則Bn的坐標(biāo)是__________________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD中,AB=CD,BF=DE,AEBD,CFBD,垂足分別為E,F(xiàn).

(1)求證:ABE≌△CDF;

(2)若AC與BD交于點O,求證:AO=CO.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】設(shè)有理數(shù)a、bc滿足abcac0),且|c|<|b|<|a|,則|x|+|x|+|x+|的最小值是( 。

A.B.C.D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】甲、乙兩支“徒步隊”到野外沿相同路線徒步,徒步的路程為24千米.甲隊步行速度為4千米/時,乙隊步行速度為6千米/時.甲隊出發(fā)1小時后,乙隊才出發(fā),同時乙隊派一名聯(lián)絡(luò)員跑步在兩隊之間來回進行一次聯(lián)絡(luò)(不停頓),他跑步的速度為10千米/時.

(1)乙隊追上甲隊需要多長時間?

(2)聯(lián)絡(luò)員從出發(fā)到與甲隊聯(lián)系上后返回乙隊時,他跑步的總路程是多少?

(3)從甲隊出發(fā)開始到乙隊完成徒步路程時止,何時兩隊間間隔的路程為1千米?

查看答案和解析>>

同步練習(xí)冊答案