【題目】已知二次函數(shù)y=ax2+bx+c的圖象如圖所示,則下列結論中:①ac>0;②a+b+c<0;③4a﹣2b+c<0;④2a+b<0;⑤4ac﹣b2<4a;⑥a+b>0中,其中正確的個數(shù)為( )
A. 2 B. 3 C. 4 D. 5
【答案】C
【解析】
由拋物線的開口方向判斷a與0的關系,由拋物線與y軸的交點判斷c與0的關系,然后根據(jù)對稱軸及拋物線的頂點坐標情況進行推理,進而對所得結論進行判斷.
①圖象開口向下,與y軸交于負半軸,對稱軸在y軸右側,能得到:a<0,c<0,
∴ac>0,故①正確;
②當x=1時,y>0,∴a+b+c>0,故②錯誤;
③當x=-2時,y<0,∴4a-2b+c<0,故③正確;
④∵對稱軸x=-<1,
∴2a+b<0,故④正確;
⑤∵拋物線的頂點在x軸的上方,
∴<1,
∵4a<0,
∴4ac-b2>4a,故⑤錯誤;
⑥∵2a+b>0,
∴2a+b-a>-a,
∴a+b>-a,
∵a<0,
∴-c>0,
∴a+b>0,故⑥正確;
綜上所述正確的個數(shù)為4個,
故選C.
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,對稱軸為直線.下列結論中,正確的是( 。
A. abc>0 B. a+b=0 C. 2b+c>0 D. 4a+c<2b
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】甲、乙兩條輪船同時從港口A出發(fā),甲輪船以每小時30海里的速度沿著北偏東60°的方向航行,乙輪船以每小時15海里的速度沿著正東方向行進,1小時后,甲船接到命令要與乙船會合,于是甲船改變了行進的速度,沿著東南方向航行,結果在小島C處與乙船相遇.假設乙船的速度和航向保持不變,求:
(1)港口A與小島C之間的距離;
(2)甲輪船后來的速度.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某蔬菜生產(chǎn)基地用裝有恒溫系統(tǒng)的大棚栽培一種適宜生長溫度為15﹣20℃的新品種,如圖是某天恒溫系統(tǒng)從開啟到關閉及關閉后,大棚里溫度y(℃)隨時間x(h)變化的函數(shù)圖象,其中AB段是恒溫階段,BC段是雙曲線y=的一部分,請根據(jù)圖中信息解答下列問題:
(1)求0到2小時期間y隨x的函數(shù)解析式;
(2)恒溫系統(tǒng)在一天內(nèi)保持大棚內(nèi)溫度不低于15℃的時間有多少小時?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在直角梯形OABC中,OA∥BC,A、B兩點的坐標分別為A(13,0),B(11,12).動點P、Q分別從O、B兩點出發(fā),點P以每秒2個單位的速度沿x軸向終點A運動,點Q以每秒1個單位的速度沿BC方向運動;當點P停止運動時,點Q也同時停止運動.線段PQ和OB相交于點D,過點D作DE∥x軸,交AB于點E,射線QE交x軸于點F.設動點P、Q運動時間為t(單位:秒).
(1)當t為何值時,四邊形PABQ是平行四邊形.
(2)△PQF的面積是否發(fā)生變化?若變化,請求出△PQF的面積s關于時間t的函數(shù)關系式;若不變,請求出△PQF的面積.
(3)隨著P、Q兩點的運動,△PQF的形狀也隨之發(fā)生了變化,試問何時會出現(xiàn)等腰△PQF?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】對于二次函數(shù)y=x2﹣2mx﹣3,有下列結論:
①它的圖象與x軸有兩個交點;
②如果當x≤﹣1時,y隨x的增大而減小,則m=﹣1;
③如果將它的圖象向左平移3個單位后過原點,則m=1;
④如果當x=2時的函數(shù)值與x=8時的函數(shù)值相等,則m=5.
其中一定正確的結論是_______.(把你認為正確結論的序號都填上)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在以O為原點的直角坐標系中,矩形OABC的兩邊OC、OA分別在x軸、y軸的正半軸上,反比例函數(shù)(x>0)與AB相交于點D,與BC相交于點E,若BD=3AD,且△ODE的面積是12,則k=( 。
A. 6 B. 9 C. D.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,等腰梯形ABCD放置在平面坐標系中,已知A(﹣2,0)、B(6,0)、D(0,3),反比例函數(shù)的圖象經(jīng)過點C.
(1)求點C的坐標和反比例函數(shù)的解析式;
(2)將等腰梯形ABCD向上平移2個單位后,問點B是否落在雙曲線上?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】折紙與證明﹣﹣﹣用紙折出黃金分割點:
第一步:如圖(1),先將一張正方形紙片ABCD對折,得到折痕EF;再折出矩形BCFE的對角線BF.
第二步:如圖(2),將AB邊折到BF上,得到折痕BG,試說明點G為線段AD的黃金分割點(AG>GD)
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com