如圖,把O點(diǎn)逆時(shí)針旋轉(zhuǎn)120°、240°,試一試畫出的圖形是怎樣的圖形.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

精英家教網(wǎng)把兩個(gè)全等的等腰直角三角形ABC和EFG(其直角邊長均為4)疊放在一起(如圖①),且使三角板EFG的直角頂點(diǎn)G與三角板ABC的斜邊中點(diǎn)O重合.現(xiàn)將三角板EFG繞O點(diǎn)逆時(shí)針旋轉(zhuǎn)(旋轉(zhuǎn)角α滿足條件:0°<α<90°),四邊形CHGK是旋轉(zhuǎn)過程中兩三角板的重疊部分(如圖②).
(1)在上述旋轉(zhuǎn)過程中,BH與CK有怎樣的數(shù)量關(guān)系四邊形CHGK的面積有何變化?證明你發(fā)現(xiàn)的結(jié)論;
(2)連接HK,在上述旋轉(zhuǎn)過程中,設(shè)BH=x,△GKH的面積為y,求y與x之間的函數(shù)關(guān)系式,并寫出自變量x的取值范圍;
(3)在(2)的前提下,是否存在某一位置,使△GKH的面積恰好等于△ABC面積的
516
?若存在,求出此時(shí)x的值;若不存在,說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:三點(diǎn)一測(cè)叢書八年級(jí)數(shù)學(xué)上 題型:044

幾何變換

  平移、對(duì)稱與旋轉(zhuǎn)是常見的幾何變換,它們都是把一個(gè)幾何圖形F1變換成為一個(gè)幾何圖形F2,而且這種變換僅改變圖形的位置,不改變圖形的形狀和大。

  例如:把△ABC沿直線BC平行移動(dòng),可以變到△ECD的位置(如圖1);以BC為軸把△ABC翻折,可以變到△BDC的位置(如圖2);繞A點(diǎn)把△ABC逆時(shí)針旋轉(zhuǎn),可以變到△AED的位置(如圖3).

  像這樣,其中一個(gè)三角形是由另一個(gè)三角形按平行移動(dòng)、翻折、旋轉(zhuǎn)等方法變成的,這種只改變位置,不改變形狀大小的圖形變換,叫做三角形的全等變換.

如圖,在正方形ABCD中,E是AD的中點(diǎn),F(xiàn)是BA的延長線上一點(diǎn),AF=AB.

(1)你認(rèn)為可以通過平移、翻折、旋轉(zhuǎn)中的哪一種方法,使△ABE變到△ADF的位置,怎樣變化?

(2)根據(jù)全等變換的意義,你能否知道線段BE與DF之間的關(guān)系.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2013屆江蘇無錫市大橋區(qū)九年級(jí)上學(xué)期期末考試數(shù)學(xué)試卷(帶解析) 題型:解答題

把一副三角板如圖(1)放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜邊AB=12cm,DC=14cm,把三角板DCE繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)15°得到△(如圖2).這時(shí)AB與相交于點(diǎn)O,與相交于點(diǎn)F.

(1)填空:∠=     °;
(2)請(qǐng)求出△的內(nèi)切圓半徑;
(3)把△繞著點(diǎn)C逆時(shí)針再旋轉(zhuǎn)度()得△,若△為等腰三角形,求的度數(shù)(精確到0.1°).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源:2012-2013學(xué)年江蘇無錫市大橋區(qū)九年級(jí)上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題

把一副三角板如圖(1)放置,其中∠ACB=∠DEC=90°,∠A=45°,∠D=30°,斜邊AB=12cm,DC=14cm,把三角板DCE繞點(diǎn)C逆時(shí)針旋轉(zhuǎn)15°得到△(如圖2).這時(shí)AB與相交于點(diǎn)O,與相交于點(diǎn)F.

(1)填空:∠=     °;

(2)請(qǐng)求出△的內(nèi)切圓半徑;

(3)把△繞著點(diǎn)C逆時(shí)針再旋轉(zhuǎn)度()得△,若△為等腰三角形,求的度數(shù)(精確到0.1°).

 

查看答案和解析>>

同步練習(xí)冊(cè)答案