【題目】如圖,菱形ABCD中,對(duì)角線AC等于,∠D=120°,則菱形ABCD的面積為(

A.B.54C.36D.

【答案】D

【解析】

如圖,連接BDAC于點(diǎn)O,根據(jù)菱形的性質(zhì)和等腰三角形的性質(zhì)可得AO的長(zhǎng)、BO=DO、ACBD、∠DAC =30°,然后利用30°角的直角三角形的性質(zhì)和勾股定理可求出OD的長(zhǎng),即得BD的長(zhǎng),再根據(jù)菱形的面積=對(duì)角線乘積的一半計(jì)算即可.

解:如圖,連接BDAC于點(diǎn)O,∵四邊形ABCD是菱形,

AD=CD,AO=CO=,BO=DO,ACBD,

∵∠ADC=120°,∴∠DAC=ACD=30°,∴AD=2DO,

設(shè)DO=x,則AD=2x,在直角△ADO中,根據(jù)勾股定理,得,解得:x=3,(負(fù)值已舍去)∴BD=6,

∴菱形ABCD的面積=

故選:D

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是規(guī)格為的正方形網(wǎng)格,請(qǐng)?jiān)谒o網(wǎng)格中按下列要求操作:

(1)請(qǐng)?jiān)诰W(wǎng)格中建立平面直角坐標(biāo)系,使點(diǎn)A的坐標(biāo)為,點(diǎn)的坐標(biāo)為

(2)在第二象限內(nèi)的格點(diǎn)上找一點(diǎn),使點(diǎn)與線段組成一個(gè)以為底的等腰三角形,且腰長(zhǎng)是無理數(shù),畫出,則點(diǎn)的坐標(biāo)是 ,的周長(zhǎng)是 (結(jié)果保留根號(hào));

(3)作出關(guān)于軸對(duì)稱的.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在△ABC中,ABAC5,BC8,點(diǎn)D是邊BC上(不與B,C重合)一動(dòng)點(diǎn),∠ADE=∠Ba,DEAC于點(diǎn)E,下列結(jié)論:①AD2AEAB;②1.8≤AE5;⑤當(dāng)AD時(shí),△ABD≌△DCE;④△DCE為直角三角形,BD46.25.其中正確的結(jié)論是_____.(把你認(rèn)為正確結(jié)論序號(hào)都填上)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著中國(guó)經(jīng)濟(jì)的快速發(fā)展以及科技水平的飛速提高,中國(guó)高鐵正迅速崛起.高鐵大大縮短了時(shí)空距離,改變了人們的出行方式.如圖,A,B兩地被大山阻隔,由A地到B地需要繞行C地,若打通穿山隧道,建成A,B兩地的直達(dá)高鐵,可以縮短從A地到B地的路程.已知:∠CAB=30°,∠CBA=45°,AC=640公里,求隧道打通后與打通前相比,從A地到B地的路程將約縮短多少公里?(參考數(shù)據(jù):≈1.7,≈1.4)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在□ABCD中,點(diǎn)E、F分別在邊AB、DC上,下列條件不能使四邊形EBFD是平行四邊形的條件是(

A.DE=BFB.AE=CFC.DEFBD.ADE=CBF

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正方形ABCD的邊長(zhǎng)為6,點(diǎn)E、F分別在BC、DC上,CE=DF=2,DEAF相交于點(diǎn)G,點(diǎn)HAE的中點(diǎn),連接GH

1)求證:△ADF≌△DCE;

2)求GH的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】觀察下列多面體,并把下表補(bǔ)充完整.

名稱

三棱柱

四棱柱

五棱柱

六棱柱

圖形

頂點(diǎn)數(shù)

6

10

12

棱數(shù)

9

12

面數(shù)

5

8

觀察上表中的結(jié)果,你能發(fā)現(xiàn)、、之間有什么關(guān)系嗎?請(qǐng)寫出關(guān)系式.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在等邊三角形ABC中,點(diǎn)DBC的中點(diǎn),點(diǎn)E、F分別是邊AB、AC(含線段AB、AC的端點(diǎn))上的動(dòng)點(diǎn),且∠EDF=120°,小明和小慧對(duì)這個(gè)圖形展開如下研究:

問題初探:

1)如圖1,小明發(fā)現(xiàn):當(dāng)∠DEB=90°時(shí),BE+CF=nAB,則n的值為______;

問題再探:

2)如圖2,在點(diǎn)E、F的運(yùn)動(dòng)過程中,小慧發(fā)現(xiàn)兩個(gè)有趣的結(jié)論:

DE始終等于DF;②BECF的和始終不變;請(qǐng)你選擇其中一個(gè)結(jié)論加以證明.

成果運(yùn)用

3)若邊長(zhǎng)AB=4,在點(diǎn)EF的運(yùn)動(dòng)過程中,記四邊形DEAF的周長(zhǎng)為LL=DE+EA+AF+FD,則周長(zhǎng)L的變化范圍是______

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】在連接A、B兩市的公路之間有一個(gè)機(jī)場(chǎng)C,機(jī)場(chǎng)大巴由A市駛向機(jī)場(chǎng)C,貨車由B市駛向A市,兩車同時(shí)出發(fā)勻速行駛,圖中線段、折線分別表示機(jī)場(chǎng)大巴、貨車到機(jī)場(chǎng)C的路程y(km)與出發(fā)時(shí)間x(h)之間的函數(shù)關(guān)系圖象.

(1)直接寫出連接A、B兩市公路的路程以及貨車由B市到達(dá)A市所需時(shí)間.

(2)求機(jī)場(chǎng)大巴到機(jī)場(chǎng)C的路程y(km)與出發(fā)時(shí)間x(h)之間的函數(shù)關(guān)系式.

(3)求機(jī)場(chǎng)大巴與貨車相遇地到機(jī)場(chǎng)C的路程.

查看答案和解析>>

同步練習(xí)冊(cè)答案