【題目】如圖,已知正方形ABCD的邊長(zhǎng)為6,點(diǎn)E、F分別在BCDC上,CE=DF=2,DEAF相交于點(diǎn)G,點(diǎn)HAE的中點(diǎn),連接GH

1)求證:△ADF≌△DCE;

2)求GH的長(zhǎng).

【答案】(1)詳見解析;(2)

【解析】

1)根據(jù)正方形的性質(zhì)可得AD=DC,∠ADC=C=90°,然后即可利用SAS證得結(jié)論;

2)根據(jù)全等三角形的性質(zhì)和余角的性質(zhì)可得∠DGF=90°,根據(jù)勾股定理易求得AE的長(zhǎng),然后根據(jù)直角三角形斜邊中線的性質(zhì)即得結(jié)果.

1)證明:∵四邊形ABCD是正方形,

AD=DC,∠ADC=C=90°,

DF = CE,

∴△ADF≌△DCESAS);

2)解:∵△ADF≌△DCE,∴∠DAF=CDE

∵∠DAF+DFA=90°,∴∠CDE +DFA=90°,

∴∠DGF=90°,∴∠AGE=90°,

AB=BC=6,EC=2,∴BE=4,

∵∠B=90°,∴AE==,

∵點(diǎn)HAE的中點(diǎn),∴GH=

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知AD為O的直徑,BC為O的切線,切點(diǎn)為M,分別過A,D兩點(diǎn)作BC的垂線,垂足分別為B,C,AD的延長(zhǎng)線與BC相交于點(diǎn)E.

(1)求證:△ABM∽△MCD;

(2)若AD=8,AB=5,求ME的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,一次函數(shù)y=kx+b(k、b為常數(shù),k0)的圖象與x軸、y軸分別交于A、B兩點(diǎn),且與反比例函數(shù)y=(n為常數(shù),且n0)的圖象在第二象限交于點(diǎn)C.CDx軸,垂足為D,若OB=2OA=3OD=12.

(1)求一次函數(shù)與反比例函數(shù)的解析式;

(2)記兩函數(shù)圖象的另一個(gè)交點(diǎn)為E,求CDE的面積;

(3)直接寫出不等式kx+b≤的解集.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,已知中,,,的邊上的兩個(gè)動(dòng)點(diǎn),其中點(diǎn)從點(diǎn)開始沿方向運(yùn)動(dòng),且速度為每秒,點(diǎn)從點(diǎn)開始沿方向運(yùn)動(dòng),且速度為每秒,它們同時(shí)出發(fā),設(shè)出發(fā)的時(shí)間為

1)則____________

2)當(dāng)為何值時(shí),點(diǎn)在邊的垂直平分線上?此時(shí)_________?

3)當(dāng)點(diǎn)在邊上運(yùn)動(dòng)時(shí),直接寫出使成為等腰三角形的運(yùn)動(dòng)時(shí)間

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,菱形ABCD中,對(duì)角線AC等于,∠D=120°,則菱形ABCD的面積為(

A.B.54C.36D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖中,AEABAEAB,BCCDBCCD,若點(diǎn)E、B、D到直線AC的距離分別為63、2,則圖中實(shí)線所圍成的陰影部分面積S( )

A.50B.44C.38D.32

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】在棋盤中建立如圖①所示的平面直角坐標(biāo)系,二顆棋子、、的位置如圖,它們的坐標(biāo)分別為、.

(1)如圖②,添加棋子,使、為端點(diǎn)的四條首尾連接的線段圍成的圖形成為軸對(duì)稱圖形,請(qǐng)?jiān)趫D中畫出該圖形的對(duì)稱軸;

(2)在其它格點(diǎn)位置添加一顆棋子,使、、為端點(diǎn)的首尾連接的四條線段構(gòu)成一個(gè)軸對(duì)稱圖形,請(qǐng)直接寫出點(diǎn)的坐標(biāo)。(寫山2個(gè)即可)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】ABC中,AB=AC,BAC=),將線段BC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°得到線段BD。

1)如圖1,直接寫出ABD的大小(用含的式子表示);

2)如圖2,BCE=150°ABE=60°,判斷ABE的形狀并加以證明;

3)在(2)的條件下,連結(jié)DE,若DEC=45°,求的值。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知二次函數(shù)

求出拋物線的對(duì)稱軸和頂點(diǎn)坐標(biāo);

在直角坐標(biāo)系中,直接畫出拋物線(注意:關(guān)鍵點(diǎn)要準(zhǔn)確,不必寫出畫圖象的過程);

根據(jù)圖象回答:

取什么值時(shí),拋物線在軸的上方?

取什么值時(shí),的值隨的值的增大而減小?

根據(jù)圖象直接寫出不等式的解集.

查看答案和解析>>

同步練習(xí)冊(cè)答案