【題目】ABC中,AB=AC,BAC=),將線段BC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°得到線段BD。

1)如圖1,直接寫(xiě)出ABD的大。ㄓ煤的式子表示);

2)如圖2,BCE=150°,ABE=60°,判斷ABE的形狀并加以證明;

3)在(2)的條件下,連結(jié)DE,若DEC=45°,求的值。

【答案】12見(jiàn)解析3

【解析】1

2ABE為等邊三角形。證明如下:

連接ADCD,ED

線段BC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)得到線段BD,

BC=BD,DBC=60°。

ABE=60°,

BCD為等邊三角形。

ABDACD,AB=AC,AD=AD,BD=CD,

ABDACDSSS。。

BCE=150°。。

ABDEBC,,,BC=BD,

ABDEBCAAS。AB=BE

ABE為等邊三角形。

3BCD=60°,BCE=150°,。

DEC=45°DCE為等腰直角三角形。

DC=CE=BC

BCE=150°,。

。

1AB=AC,BAC=。

將線段BC繞點(diǎn)B逆時(shí)針旋轉(zhuǎn)60°得到線段BD。

。

2)由SSS證明ABDACD,由AAS證明ABDEBC,即可根據(jù)有一個(gè)角等于的等腰三角

形是等邊三角形的判定得出結(jié)論。

3)通過(guò)證明DCE為等腰直角三角形得出,由(1,從

,解之即可。

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我市城市綠化工程招標(biāo),有甲、乙兩個(gè)工程隊(duì)投標(biāo),經(jīng)測(cè)算:甲隊(duì)單獨(dú)完成這項(xiàng)工程需要60天,若由甲隊(duì)先做20天,再由甲、乙合作12天,共完成總工作量的三分之二.

(1)乙隊(duì)單獨(dú)完成這項(xiàng)工程需要多少天?

(2)甲隊(duì)施工l天需付工程款3.5萬(wàn)元,乙隊(duì)施工一天需付工程款2萬(wàn)元,該工程由甲乙兩隊(duì)合作若干天后,再由乙隊(duì)完成剩余工作,若要求完成此項(xiàng)工程的工程款不超過(guò)186萬(wàn)元,求甲、乙兩隊(duì)最多合作多少天?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】目前世界上最高的電視塔是廣州新電視塔.如圖所示,新電視塔高AB為610米,遠(yuǎn)處有一棟大樓,某人在樓底C處測(cè)得塔頂B的仰角為45°,在樓頂D處測(cè)得塔頂B的仰角為39°.

(1)求大樓與電視塔之間的距離AC;

(2)求大樓的高度CD(精確到1米).

(參考數(shù)據(jù):sin39°≈0.6293,cos39°≈0.7771,tan39°≈0.8100)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,已知等邊三角形中,點(diǎn),,分別為各邊中點(diǎn),為直線上一動(dòng)點(diǎn),為等邊三角形(點(diǎn)的位置改變時(shí),也隨之整體移動(dòng)).

1)如圖1,當(dāng)點(diǎn)在點(diǎn)左側(cè)時(shí),請(qǐng)判斷有怎樣的數(shù)量關(guān)系?請(qǐng)直接寫(xiě)出結(jié)論,不必證明或說(shuō)明理由;

2)如圖2,當(dāng)點(diǎn)上時(shí),其它條件不變,(1)的結(jié)論中的數(shù)量關(guān)系是否仍然成立?若成立,請(qǐng)利用圖2證明;若不成立,請(qǐng)說(shuō)明理由;

3)若點(diǎn)在點(diǎn)右側(cè)時(shí),請(qǐng)你在圖3中畫(huà)出相應(yīng)的圖形,并判斷(1)的結(jié)論中的數(shù)量關(guān)系是否仍然成立?若成立,請(qǐng)直接寫(xiě)出結(jié)論,不必證明或說(shuō)明理由.(提示:連接、.可證、、、均為等邊三角形).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】小明在證明“有兩個(gè)角相等的三角形是等腰三角形”這一命題時(shí), 畫(huà)出圖形,寫(xiě)出“己知”、“求證”(如圖),他對(duì) 輔助線描述如下:“過(guò)點(diǎn)ABC的中垂線AD,垂足為D.

(1)請(qǐng)你簡(jiǎn)要說(shuō)明小明的輔助線作法錯(cuò)在哪里?

(2)請(qǐng)你正確完整地寫(xiě)出這一命題的證明過(guò)程.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某文具店去年8月底購(gòu)進(jìn)了一批文具1160件,預(yù)計(jì)在9月份進(jìn)行試銷(xiāo).購(gòu)進(jìn)價(jià)格為每件10元.若售價(jià)為12/件,則可全部售出.若每漲價(jià)0.1元.銷(xiāo)售量就減少2件.

1)求該文具店在9月份銷(xiāo)售量不低于1100件,則售價(jià)應(yīng)不高于多少元?

2)由于銷(xiāo)量好,10月份該文具進(jìn)價(jià)比8月底的進(jìn)價(jià)每件增加20%,該店主增加了進(jìn)貨量,并加強(qiáng)了宣傳力度,結(jié)果10月份的銷(xiāo)售量比9月份在(1)的條件下的最低銷(xiāo)售量增加了m%,但售價(jià)比9月份在(1)的條件下的最高售價(jià)減少m%.結(jié)果10月份利潤(rùn)達(dá)到3388元,求m的值(m10).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】定義:有兩條邊長(zhǎng)的比值為的直角三角形叫做魅力三角形我們知道,命題直角三角形30°角所對(duì)的直角邊等于斜邊的一半是一個(gè)真命題,所以30°角的直角三角形就是一個(gè)魅力三角形

1)設(shè)魅力三角形較短直角邊為a,較長(zhǎng)直角邊為b,請(qǐng)你直接寫(xiě)出的值.

2)如圖,在RtABC中,∠B90°BC6,DAB的中點(diǎn),點(diǎn)ECD上,滿(mǎn)足ADDE,連結(jié)AE,過(guò)點(diǎn)DDFAEBC于點(diǎn)F

①如果點(diǎn)ECD的中點(diǎn),求證:BDF魅力三角形

②如果BDF魅力三角形,且BFBC,求線段AC的長(zhǎng)

(二次根式運(yùn)算提示:(2n22n2a,比如:(4242216×348

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在正方形ABCD外側(cè),作等邊三角形ADE,AC,BE相交于點(diǎn)F,則∠BFC為( 。

A. 75°B. 60°C. 55°D. 45°

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】對(duì)于給定的函數(shù),自變量取x1,x2時(shí),對(duì)應(yīng)的函數(shù)值分別記為y1,y2.自變量取時(shí).對(duì)應(yīng)的函數(shù)值記為,例如一次函數(shù)y2x+1,自變量取x1,x2時(shí),對(duì)應(yīng)的函數(shù)值分別為y12x1+1,y22x2+1,自變量取時(shí),對(duì)應(yīng)的函數(shù)值為2+1,若對(duì)于給定的函數(shù),自變量取x1x2x1x2)時(shí),總有,則稱(chēng)函數(shù)為凸凸函數(shù).對(duì)于給定的函數(shù)總有,則稱(chēng)函數(shù)為凹凹函數(shù).對(duì)于給定的函數(shù)總有,則稱(chēng)函數(shù)為平平函數(shù).

1)求證:函數(shù)y2x是平平函數(shù);

2)判斷函數(shù)yax2是凸凸函數(shù),凹凹函數(shù)還是平平函數(shù).

查看答案和解析>>

同步練習(xí)冊(cè)答案