【題目】有一塊含30°角的直角三角板OMN,其中∠MON=90°,∠NMO=30°,ON=2,將這塊直角三角板按如圖所示位置擺放.等邊△ABC的頂點(diǎn)B與點(diǎn)O重合,BC邊落在OM上,點(diǎn)A恰好落在斜邊MN上,將等邊△ABC從圖1的位置沿OM方向以每秒1個(gè)單位長(zhǎng)度的速度平移,邊AB,AC分別與斜邊MN交于點(diǎn)E,F(如圖2所示),設(shè)△ABC平移的時(shí)間為t(s)(0<t<6).
(1)等邊△ABC的邊長(zhǎng)為 ;
(2)在運(yùn)動(dòng)過(guò)程中,當(dāng) 時(shí),MN垂直平分AB;
(3)當(dāng)0<t<6時(shí),求直角三角板OMN與等邊△ABC重疊部分的面積S與時(shí)間t之間的函數(shù)關(guān)系式.
【答案】(1)3;(2)3;(3).
【解析】
(1)根據(jù),∠OMN=30°和△ABC為等邊三角形,求證△OAM為直角三角形,然后即可得出答案.
(2)易知當(dāng)點(diǎn)C與M重合時(shí)直線MN平分線段AB,此時(shí)OB=3,由此即可解決問(wèn)題;
(3)分兩種情形分別求解:當(dāng)0<t≤3時(shí),作CD⊥FM于D.根據(jù)S=S△MEB﹣2S△MDC,計(jì)算即可.②當(dāng)3<t<6時(shí),S=S△MEB.
解:(1)在Rt△MON中,∵∠MON=90°,ON=2,∠M=30°
∴OM=ON=6,
∵△ABC為等邊三角形
∴∠AOC=60°,
∴∠OAM=90°
∴OA⊥MN,即△OAM為直角三角形,
∴OA=OM=×6=3.
故答案為3.
(2)易知當(dāng)點(diǎn)C與M重合時(shí)直線MN平分線段AB,此時(shí)OB=3,所以t=3.
故答案為3.
(3)易知:OM=6,MN=4,S△OMN=×2×6=6,
∵∠M=30°,∠MBA=60°,
∴∠BEM=90°.
①當(dāng)0<t≤3時(shí),作CD⊥FM于D.
∵∠ACB=60°,∠M=30°,∠FCB=∠M+∠CFM,
∴∠CFM=∠M=30°,
∴CF=CM,
∵CD⊥FM,
∴DF=DM,
∴S△CMF=2S△CDM,
∵△MEB∽△MON,
∴,
∴S△MEB=,
∵△MDC∽△MON,
∴,
∴S△MDC=,
∴S=S△MEB﹣2S△MDC=﹣.
②當(dāng)3<t<6時(shí),S=S△MEB=,
綜上所述,S= .
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】央視“經(jīng)典詠流傳”開播以來(lái)受到社會(huì)廣泛關(guān)注,某校就“中華文化我傳承﹣﹣地方戲曲進(jìn)校園”的喜愛情況進(jìn)行了隨機(jī)調(diào)查,對(duì)收集的信息進(jìn)行統(tǒng)計(jì),繪制了下面兩幅統(tǒng)計(jì)圖:
請(qǐng)你根據(jù)統(tǒng)計(jì)圖所提供的信息解答下列問(wèn)題:
(1)本次調(diào)查的總?cè)藬?shù)為 ,扇形統(tǒng)計(jì)圖中C類所在扇形的圓心角度數(shù)為 ;
(2)若該校共有學(xué)生1200人,請(qǐng)根據(jù)上述調(diào)查結(jié)果,估計(jì)該校學(xué)生選擇D類的大約有多少人?
(3)在調(diào)查的A類4人中,剛好有2名男生2名女生,從中隨機(jī)抽取兩名同學(xué)擔(dān)任兩個(gè)角色,用畫樹形圖或列表的方法求出抽到的兩名學(xué)生性別相同的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在直角坐標(biāo)系中,已知點(diǎn)A(﹣3,0),B(0,4),對(duì)△OAB連續(xù)作旋轉(zhuǎn)變換,依次得到△1,△2,△3,△4,…,則△2019的直角頂點(diǎn)的坐標(biāo)為( 。
A. (8076,0)B. (8064,0)C. (8076,)D. (8064,)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知A,B是反比例函數(shù)y=(k>0,x>0)圖象上的兩點(diǎn),BC∥x軸,交y軸于點(diǎn)C,動(dòng)點(diǎn)P從坐標(biāo)原點(diǎn)O出發(fā),沿O→A→B→C(圖中“→”所示路線)勻速運(yùn)動(dòng),終點(diǎn)為C,過(guò)P作PM⊥x軸,垂足為M.設(shè)三角形OMP的面積為S,P點(diǎn)運(yùn)動(dòng)時(shí)間為r,則S關(guān)于t的函數(shù)圖象大致為( 。
A. B. C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】有一塊含30°角的直角三角板OMN,其中∠MON=90°,∠NMO=30°,ON=2,將這塊直角三角板按如圖所示位置擺放.等邊△ABC的頂點(diǎn)B與點(diǎn)O重合,BC邊落在OM上,點(diǎn)A恰好落在斜邊MN上,將等邊△ABC從圖1的位置沿OM方向以每秒1個(gè)單位長(zhǎng)度的速度平移,邊AB,AC分別與斜邊MN交于點(diǎn)E,F(如圖2所示),設(shè)△ABC平移的時(shí)間為t(s)(0<t<6).
(1)等邊△ABC的邊長(zhǎng)為 ;
(2)在運(yùn)動(dòng)過(guò)程中,當(dāng) 時(shí),MN垂直平分AB;
(3)當(dāng)0<t<6時(shí),求直角三角板OMN與等邊△ABC重疊部分的面積S與時(shí)間t之間的函數(shù)關(guān)系式.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解學(xué)生對(duì)博鰲論壇會(huì)的了解情況,某中學(xué)隨機(jī)抽取了部分學(xué)生進(jìn)行問(wèn)卷調(diào)查,將調(diào)查結(jié)果記作“非常了解,了解,了解較少,不了解.”四類分別統(tǒng)計(jì),并繪制了下列兩幅統(tǒng)計(jì)圖(不完整).請(qǐng)根據(jù)圖中信息,解答下列問(wèn)題:
(1)此次共調(diào)查了______名學(xué)生;扇形統(tǒng)計(jì)圖中所在的扇形的圓心角度數(shù)為______;
(2)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)若該校共有1600名學(xué)生,請(qǐng)你估計(jì)對(duì)博鰲論壇會(huì)的了解情況為“非常了解”的學(xué)生約有多少人?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】(1)問(wèn)題發(fā)現(xiàn):如圖1,在等邊△ABC中,點(diǎn)D為BC邊上一動(dòng)點(diǎn),DE∥AB交AC于點(diǎn)E,將AD繞點(diǎn)D順時(shí)針旋轉(zhuǎn)60°得到DF,連接CF.則AE與FC的數(shù)量關(guān)系是 ;∠ACF的度數(shù)為 .
(2)拓展探究:如圖2,在Rt△ABC中,∠ABC=90°,∠ACB=60°,點(diǎn)D為BC邊上一動(dòng)點(diǎn),DE∥AB交AC于點(diǎn)E,當(dāng)∠ADF=∠ACF=90°時(shí),求的值.
(3)解決問(wèn)題:如圖3,在△ABC中,BC:AB=m,點(diǎn)D為BC的延長(zhǎng)線上一點(diǎn)過(guò)點(diǎn)D作DE∥AB交AC的延長(zhǎng)線于點(diǎn)E,直接寫出當(dāng)∠ADF=∠ACF=∠ABC時(shí),的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,Rt△ABC中,∠B=90°,O是AB上的一點(diǎn),以O為圓心,OB為半徑的圓與AB交于點(diǎn)E,交AC于點(diǎn)D,其中DE∥OC
(1)求證:AC為⊙O的切線;
(2)若AD=,且AB、AE的長(zhǎng)是關(guān)于x的方程x2-4x+k=0的兩個(gè)實(shí)數(shù)根,求⊙O的半徑、CD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在邊長(zhǎng)4的正方形ABCD中,E是邊BC的中點(diǎn),將△CDE沿直線DE折疊后,點(diǎn)C落在點(diǎn)F處,冉將其打開、展平,得折痕DE。連接CF、BF、EF,延長(zhǎng)BF交AD于點(diǎn)G。則下列結(jié)論:①BG= DE;②CF⊥BG;③sin∠DFG= ;④S△DFG=.其中正確的有( )
A. 1個(gè)
B. 2個(gè)
C. 3個(gè)
D. 4個(gè)
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com