【題目】如圖,已知在ABC中,∠A=90°

1)請用圓規(guī)和直尺作出⊙P,使圓心PAC邊上,且與AB,BC兩邊都相切(保留作圖痕跡,不寫作法和證明);

2)在(1)的條件下,若∠B=45°AB=1,PBC于點D,求劣弧的長.

【答案】1)畫圖見解析;(2)(2)弧AD的長為π.

【解析】分析: (1)作∠ABC的平分線,與AC的交點就是圓心P,此時⊙PAB,BC兩邊都相切;如圖,作BC的垂線PD,證明PD和半徑相等即可,根據(jù)角平分線的性質(zhì)可得:PA=PD.

(2)要想求劣弧AD的長,根據(jù)弧長公式需求圓心角∠APD的半徑AP的長,利用四邊形的內(nèi)角和求∠APD=135°,再利用勾股定理和等腰三角形的性質(zhì)求出AP=PD=DC=1,代入公式可求弧長.

詳解:

1)作∠ABC的角平分線交AC于點P,以點P為圓心,AP為半徑作圓.

2)如圖,∵PAB,BC兩邊都相切,

∴∠BAP=∠BDP=90°,

∵∠ABC=45°

∴∠APD=360°90°90°45°=135°,

∴∠DPC=45°,

∴△DPC是等腰直角三角形,

DP=DC,

RtABC中,AB=AC=1,

CB=

BP=BP,AP=PD

RtABPRtDBP,

BD=AB=1,

CD=PD=AP=1,

∴劣弧AD的長==.

點睛: 本題考查了切線的判定、圓的作圖以及弧長的計算,首先掌握切線的判定方法:①無交點,作垂線段,證半徑;②有交點,作半徑,證垂直;本題利用了第①種判定方法;并熟練掌握弧長計算公式:l(弧長為l,圓心角度數(shù)為n,圓的半徑為R).

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】食品安全受到全社會的廣泛關(guān)注,濟南市某中學對部分學生就食品安全知識的了解程度,采用隨機抽樣調(diào)查的方式,并根據(jù)收集到的信息進行統(tǒng)計,繪制了下面兩份尚不完整的統(tǒng)計圖,請你根據(jù)統(tǒng)計圖中所提供的信息解答下列問題.

1)接受問卷調(diào)查的學生共有_____人,扇形統(tǒng)計圖中基本了解部分所對應扇形的圓心角為_____.

2)請補全條形統(tǒng)計圖.

3)若該中學共有學生900人,請根據(jù)上述調(diào)查結(jié)果,估計該中學學生中對食品安全知識達到了解基本了解程度的總?cè)藬?shù).

4)若從對食品安全知識達到了解程度的2個女生和2個男生中隨機抽取2人參加食品安全知識競賽,請用樹狀圖或列表法求出恰好抽到1個男生和1個女生的概率.

【答案】16090°;(2)補圖見解析;(3300;(4

【解析】分析:(1)根據(jù)了解很少的人數(shù)除以了解很少的人數(shù)所占的百分百求出抽查的總?cè)藬?shù),再用“基本了解”所占的百分比乘以360°,即可求出“基本了解”部分所對應扇形的圓心角的度數(shù);(2)用調(diào)查的總?cè)藬?shù)減去“基本了解”“了解很少”和“基本了解”的人數(shù),求出了解的人數(shù),從而補全統(tǒng)計圖;(3)用總?cè)藬?shù)乘以了解基本了解程度的人數(shù)所占的比例,即可求出達到“了解”和“基本了解”程度的總?cè)藬?shù);(4)根據(jù)題意列出表格,再根據(jù)概率公式即可得出答案.

詳解:(160;90°.

2)補全的條形統(tǒng)計圖如圖所示.

3)對食品安全知識達到了解基本了解的學生所占比例為,由樣本估計總體,該中學學生中對食品安全知識達到了解基本了解程度的總?cè)藬?shù)為.

4)列表法如表所示,

男生女生

男生

男生

女生

女生

男生

男生男生

男生女生

男生女生

男生

男生男生

男生女生

男生女生

女生

男生女生

男生女生

女生女生

女生

男生女生

女生女生

所有等可能的情況一共12種,其中選中1個男生和1個女生的情況有8種,所以恰好選中1個男生和1個女生的概率是.

點睛:本題考查了條形統(tǒng)計圖、扇形統(tǒng)計圖以及用列表法或樹狀圖法求概率,根據(jù)題意求出總?cè)藬?shù)是解題的關(guān)鍵;注意運用概率公式:概率=所求情況數(shù)與總情況數(shù)之比.

型】解答
結(jié)束】
24

【題目】為響應國家全民閱讀的號召,某社區(qū)鼓勵居民到社區(qū)閱覽室借閱讀書,并統(tǒng)計每年的借閱人數(shù)和圖書借閱總量(單位:本),該閱覽室在2015年圖書借閱總量是7500本,2017年圖書借閱總量是10800.

1)求該社區(qū)的圖書借閱總量從2015年至2017年的年平均增長率.

2)已知2017年該社區(qū)居民借閱圖書人數(shù)有1350人,預計2018年達到1440人,如果2017年至2018年圖書借閱總量的增長率不低于2015年至2017年的年平均增長率,設2018年的人均借閱量比2017年增長a%,求a的值至少是多少?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,正方形紙片ABCD的邊長為2,翻折∠B、∠D,使兩個直角的頂點重合于對角線BD上一點P、EFGH分別是折痕(如圖2).設AEx(0<x<2),給出下列判斷:①當x=1時,點P是正方形ABCD的中心;②當x時,EF+GHAC;③當0<x<2時,六邊形AEFCHG面積的最大值是3;④當0<x<2時,六邊形AEFCHG周長的值不變.其中正確的選項是( )

A. ①③ B. ①②④ C. ①③④ D. ①②③④

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,已知數(shù)軸上點A表示的數(shù)為﹣7,點B表示的數(shù)為5,點C到點A,點B的距離相等,動點P從點A出發(fā),以每秒2個單位長度的速度沿數(shù)軸向右勻速運動,設運動的時間為tt>0)秒.

(1)點C表示的數(shù)是   ;

(2)求當t等于多少秒時,點P到達點B處;

(3)點P表示的數(shù)是   (用含有t的代數(shù)式表示);

(4)求當t等于多少秒時,PC之間的距離為2個單位長度.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】學生的學業(yè)負擔過重會嚴重影響學生對待學習的態(tài)度.為此我市教育部門對部分學校的八年級學生對待學習的態(tài)度進行了一次抽樣調(diào)查(把學習態(tài)度分為三個層級,A級:對學習很感興趣;B級:對學習較感興趣;C級:對學習不感興趣),并將調(diào)查結(jié)果繪制成圖和圖的統(tǒng)計圖(不完整).請根據(jù)圖中提供的信息,解答下列問題:

1)此次抽樣調(diào)查中,共調(diào)查了 名學生;

2)將圖補充完整;

3)求出圖C級所占的圓心角的度數(shù);

4)根據(jù)抽樣調(diào)查結(jié)果,請你估計我市近8000名八年級學生中大約有多少名學生學習態(tài)度達標(達標包括A級和B級)?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】(本題8分)如圖,某住宅小區(qū)在施工過程中留下了一塊空地,已知AD=4米,CD=3米,ADC=90°,AB=13米,BC=12米,小區(qū)為美化環(huán)境,欲在空地上鋪草坪,已知草坪每平方米100元,試問用該草坪鋪滿這塊空地共需花費多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】垃圾分類越來越受到人們的關(guān)注,我市某中學對部分學生就垃圾分類知識的了解程度,采用隨機抽樣調(diào)查的方式,并根據(jù)收集到的信息進行統(tǒng)計,繪制了下面兩幅尚不完整的統(tǒng)計圖.根據(jù)圖中信息回答下列問題:

(1)接受問卷調(diào)查的學生共有________人,條形統(tǒng)計圖中m的值為_______;

(2)扇形統(tǒng)計圖中了解很少部分所對應扇形的圓心角的度數(shù)為________;

3)若該校學生總數(shù)為1200人,試估計該校學生中對垃圾分類知識達到非常了解基本了解程度的總?cè)藬?shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某校舉行猜謎語大賽,甲、乙兩隊各有5名選手參賽。他們的成績(滿分100分,兩個1號隊員的成績均未統(tǒng)計)如圖所示

成績統(tǒng)計分析表:

平均數(shù)

中位數(shù)

眾數(shù)

方差

優(yōu)秀率

甲隊

85

85

70

80%

乙隊

85

160

根據(jù)以上材料

(1)計算出甲、乙兩隊1號選手的成績;

(2)補充完成成績統(tǒng)計圖和成績統(tǒng)計分析表.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】將正整數(shù)按如圖的規(guī)律排列:平移表中的方框,方框中的4個數(shù)的和可能是(

A.2010B.2014C.2018D.2022

查看答案和解析>>

同步練習冊答案