【題目】如圖,是的內(nèi)接三角形,AB為直徑,,,點(diǎn)D為線段AC上一動(dòng)點(diǎn),過(guò)點(diǎn)D作AB的垂線交于點(diǎn)E,交AB于點(diǎn)F,連結(jié)BD,CF,并延長(zhǎng)BD交于點(diǎn)H.
求的半徑;
當(dāng)DE經(jīng)過(guò)圓心O時(shí),求AD的長(zhǎng);
求證:;
求的最大值.
【答案】(1)5;(2);(3)見(jiàn)解析;(4)當(dāng)時(shí),為最大值
【解析】
由AB是直徑知,依據(jù)及勾股定理求解可得;
由知,結(jié)合為公共角可證∽得,據(jù)此可得;
由∽知,結(jié)合為和的公共角可證∽,依據(jù)相似三角形的性質(zhì)可得答案;
連接CH,先證∽得,即,再設(shè),則,,從而得出,利用二次函數(shù)的性質(zhì)求解可得.
解:為直徑,
,
,
,
由勾股定理:;
,
,
為和的公共角,
∽,
,
;
由可得∽,
,即,
又為和的公共角,
∽,
;
連結(jié)CH,
由知∽,
,
,
,
又,
∽,
,即,
設(shè),則,,
,
當(dāng)時(shí),為最大值.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,AB是⊙O的直徑,點(diǎn)C在⊙O上,點(diǎn)P是AB延長(zhǎng)線上一點(diǎn),連接CP.
(1)如圖1,若∠PCB=∠A.
①求證:直線PC是⊙O的切線;
②若CP=CA,OA=2,求CP的長(zhǎng);
(2)如圖2,若點(diǎn)M是弧AB的中點(diǎn),CM交AB于點(diǎn)N,MNMC=9,求BM的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知,四邊形ABCD內(nèi)接于,對(duì)角線AC和BD相交于點(diǎn)E,AC是的直徑.
如圖1,連接OB和OD,求證:;
如圖2,延長(zhǎng)BA到點(diǎn)F,使,在AD上取一點(diǎn)G,使,連接FG和FC,過(guò)點(diǎn)G作,垂足為M,過(guò)點(diǎn)D作,垂足為N,求的值;
如圖3,在的條件下,點(diǎn)H為FG的中點(diǎn),連接DH交于點(diǎn)K,連接AK,若,,求線段BC的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,分別以等邊三角形 ABC 的三個(gè)頂點(diǎn)為圓心,以邊長(zhǎng)為半徑畫(huà)弧,得到的封閉圖形就是“勒洛三角形”(勒洛 三角形是定寬曲線所能構(gòu)成的面積最小的圖形),若 AB=2,則勒洛三角形的面積為( )
A. π+ B. π-C. 2π+2 D. 2π-2
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB 為⊙O 的直徑,PD 切⊙O 于點(diǎn) C,交 AB 的延長(zhǎng)線于點(diǎn) D,且∠D=2∠A.
(1)求∠D 的度數(shù);
(2)若⊙O 的半徑為 m,求 BD 的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】我市某樓盤(pán)準(zhǔn)備以每平方米15000元的均價(jià)對(duì)外銷售,由于國(guó)務(wù)院有關(guān)房地產(chǎn)的新政策出臺(tái)后,購(gòu)房者持幣觀望,房地產(chǎn)開(kāi)發(fā)商為了加快資金周轉(zhuǎn),對(duì)價(jià)格經(jīng)過(guò)兩次下調(diào)后,決定以每平方米12150元的均價(jià)開(kāi)盤(pán)銷售
求平均每次下調(diào)的百分率.
某人準(zhǔn)備以開(kāi)盤(pán)價(jià)均價(jià)購(gòu)買(mǎi)一套100平方米的住房,開(kāi)發(fā)商給予以下兩種優(yōu)惠方案以供選擇:
打折銷售;不打折,一次性送裝修費(fèi)每平方米250元.
試問(wèn)哪種方案更優(yōu)惠?比另外一種方案優(yōu)惠多少元?不考慮其他因素
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某校對(duì)A《唐詩(shī)》、B《宋詞》、C《蒙山童韻》、D其它,這四類著作開(kāi)展“最受歡迎的傳統(tǒng)文化著作”調(diào)查,隨機(jī)調(diào)查了若干名學(xué)生(每名學(xué)生必選且只能選這四類著作中的一種)并將得到的信息繪制了下面兩幅不完整的統(tǒng)計(jì)圖:
(1)求一共調(diào)查了多少名學(xué)生;
(2)請(qǐng)將條形統(tǒng)計(jì)圖補(bǔ)充完整;
(3)該校語(yǔ)文老師想從這四類著作中隨機(jī)選取兩類作為學(xué)生寒假必讀書(shū)籍,請(qǐng)用樹(shù)狀圖或列表的方法求恰好選中《宋詞》和《蒙山童韻》的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解某中學(xué)學(xué)生課余生活情況,對(duì)喜愛(ài)看課外書(shū)、體育活動(dòng)、看電視、社會(huì)實(shí)踐四個(gè)方面的人數(shù)進(jìn)行調(diào)查統(tǒng)計(jì),現(xiàn)從該校隨機(jī)抽取n名學(xué)生作為樣本,采用問(wèn)卷調(diào)查的方式收集數(shù)據(jù)參與問(wèn)卷調(diào)查的每名學(xué)生只能選擇其中一項(xiàng),并根據(jù)調(diào)查得到的數(shù)據(jù)繪制成了如圖所示的兩幅不完整的統(tǒng)計(jì)圖,由圖中提供的信息,解答下列問(wèn)題:
補(bǔ)全條形統(tǒng)計(jì)圖;
若該校共有學(xué)生2400名,試估計(jì)該校喜愛(ài)看電視的學(xué)生人數(shù).
若調(diào)查到喜愛(ài)體育活動(dòng)的4名學(xué)生中有3名男生和1名女生,現(xiàn)從這4名學(xué)生中任意抽取2名,求恰好抽到2名男生的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y=kx+b的圖象與反比例函數(shù)(x>0)的圖象交于A(2,﹣1),B(,n)兩點(diǎn),直線y=2與y軸交于點(diǎn)C.
(1)求一次函數(shù)與反比例函數(shù)的解析式;
(2)求△ABC的面積.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com