已知:△ABC中,點(diǎn)E是AB邊的中點(diǎn),點(diǎn)F在AC邊上,若以A,E, F為頂點(diǎn)的三角形與△ABC相似,則需要增加的一個(gè)條件是 .(寫(xiě)出一個(gè)即可)
AF=AC或∠AFE=∠ABC.
解:分兩種情況:
①∵△AEF∽△ABC,
∴AE:AB=AF:AC,
即1:2=AF:AC,
∴AF=AC;
②∵△AFE∽△ACB,
∴∠AFE=∠ABC.
∴要使以A、E、F為頂點(diǎn)的三角形與△ABC相似,則AF=AC或∠AFE=∠ABC.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
若兩個(gè)扇形滿(mǎn)足弧長(zhǎng)的比等于它們半徑的比,則這稱(chēng)這兩個(gè)扇形相似。如圖,如果扇形AOB與扇形是相似扇形,且半徑(為不等于0的常數(shù))。那么下面四個(gè)結(jié)論:
①∠AOB=∠;②△AOB∽△;③;
④扇形AOB與扇形的面積之比為。成立的個(gè)數(shù)為:
A、1個(gè) B、2個(gè) C、3個(gè) D、4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,曲線(xiàn)拋物線(xiàn)的一部分,且表達(dá)式為:曲線(xiàn)與曲線(xiàn)關(guān)于直線(xiàn)對(duì)稱(chēng)。
(1)求A、B、C三點(diǎn)的坐標(biāo)和曲線(xiàn)的表達(dá)式;
(2)過(guò)點(diǎn)D作軸交曲線(xiàn)于點(diǎn)D,連接AD,在曲線(xiàn)上有一點(diǎn)M,使得四邊形ACDM為箏形(如果一個(gè)四邊形的一條對(duì)角線(xiàn)被另一條對(duì)角線(xiàn)垂直平分,這樣的四邊形為箏形),請(qǐng)求出點(diǎn)M的橫坐標(biāo)。
(3)設(shè)直線(xiàn)CM與軸交于點(diǎn)N,試問(wèn)在線(xiàn)段MN下方的曲線(xiàn)上是否存在一點(diǎn)P,使△PMN的面積最大?若存在,求出點(diǎn)P的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由。
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
對(duì)于二次函數(shù).有下列四個(gè)結(jié)論:①它的對(duì)稱(chēng)軸是直線(xiàn);②設(shè),,則當(dāng)時(shí),有;③它的圖象與x軸的兩個(gè)交點(diǎn)是(0,0)和(2,0);④當(dāng)時(shí),.其中正確的結(jié)論的個(gè)數(shù)為( )
A.1 B.2 C.3 D.4
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
如圖,過(guò)原點(diǎn)的直線(xiàn)和與反比例函數(shù)的圖象分別交于兩點(diǎn)A,C和B,D,連結(jié)AB,BC,CD,DA.
(1)四邊形ABCD一定是 四邊形;(直接填寫(xiě)結(jié)果)
(2)四邊形ABCD可能是矩形嗎?若可能,試求此時(shí)和之間的關(guān)系式;若不可能,說(shuō)明理由;
(3)設(shè)P(,),Q(,)()是函數(shù)圖象上的任意兩點(diǎn),,,試判斷,的大小關(guān)系,并說(shuō)明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
(1)如圖,M、N為山兩側(cè)的兩個(gè)村莊,為了兩村交通方便,根據(jù)國(guó)家的惠民政策,政府決定打一直線(xiàn)涵洞, 工程人員為了計(jì)算工程量,必須計(jì)算M、N兩點(diǎn)之間的直線(xiàn)距離,選擇測(cè)量點(diǎn)A、B、C,點(diǎn)B、C分別在AM、AN上,現(xiàn)測(cè)得AM=1千米、AN=1.8千米,AB=54米,BC=45米,AC=30米,求M、N兩點(diǎn)之間的直線(xiàn)距離
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com