【題目】對于平面直角坐標(biāo)系xOy中的點(diǎn)P(a,b),若點(diǎn)P′的坐標(biāo)為(a+kb,ka+b)(其中k為常數(shù),且k≠0),則稱點(diǎn)P′為點(diǎn)P的“k屬派生點(diǎn)”.
例如:P(1,4)的“2屬派生點(diǎn)”為P′(1+2×4,2×1+4),即P′(9,6).
(1)點(diǎn)P(﹣1,6)的“2屬派生點(diǎn)”P′的坐標(biāo)為;
(2)若點(diǎn)P的“3屬派生點(diǎn)”P′的坐標(biāo)為(6,2),則點(diǎn)P的坐標(biāo)
(3)若點(diǎn)P在x軸的正半軸上,點(diǎn)P的“k屬派生點(diǎn)”為P′點(diǎn),且線段PP′的長度為線段OP長度的2倍,求k的值.

【答案】
(1)(11,4)
(2)(0,2)
(3)解:∵點(diǎn)P在x軸的正半軸上,

∴b=0,a>0.

∴點(diǎn)P的坐標(biāo)為(a,0),點(diǎn)P′的坐標(biāo)為(a,ka)

∴線段PP′的長為P′到x軸距離為|ka|.

∵P在x軸正半軸,線段OP的長為a,

∴|ka|=2a,即|k|=2,

∴k=±2.


【解析】解:(1)點(diǎn)P(﹣1,6)的“2屬派生點(diǎn)”P′的坐標(biāo)為(﹣1+6×2,﹣1×2+6),即(11,4),

所以答案是:(11,4);
(2)設(shè)點(diǎn)P的坐標(biāo)為(x、y),

由題意知

解得: ,

即點(diǎn)P的坐標(biāo)為(0,2),
(3)∵點(diǎn)P在x軸的正半軸上,
∴b=0,a>0.
∴點(diǎn)P的坐標(biāo)為(a,0),點(diǎn)P′的坐標(biāo)為(a,ka)
∴線段PP′的長為P′到x軸距離為|ka|.
∵P在x軸正半軸,線段OP的長為a,
∴|ka|=2a,即|k|=2,
∴k=±2.

所以答案是:(1)(11,4);(2)(0,2);(3)k=±2.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】大于1的正整數(shù)m的三次冪可“分裂”成若干個連續(xù)奇數(shù)的和,如23=3+5,33=7+9+11,43=13+15+17+19,…,若m3分裂后,其中有一個奇數(shù)是123,則m的值是( )
A.9
B.10
C.11
D.12

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】近年來,我市全面實(shí)行新型農(nóng)村合作醫(yī)療,得到了廣大農(nóng)民的積極響應(yīng),很多農(nóng)民看病貴、看病難的問題在合作醫(yī)療中得到了緩解.參加醫(yī)保的農(nóng)民可在規(guī)定的醫(yī)院就醫(yī)并按規(guī)定標(biāo)準(zhǔn)報(bào)銷部分醫(yī)療費(fèi)用,表①是醫(yī)療費(fèi)用分段報(bào)銷的標(biāo)準(zhǔn);表②是甲、乙、丙三位農(nóng)民今年的實(shí)際醫(yī)療費(fèi)及個人承擔(dān)總費(fèi)用.
表①

醫(yī)療費(fèi)用范圍

門診費(fèi)

住院費(fèi)(元)

0~5000的部分

5001~20000的部分

20001及以上的部分

報(bào)銷比例

a%

80%

85%

c%

表②

門診費(fèi)

住院費(fèi)

個人承擔(dān)總費(fèi)用

260元

0元

182元

80元

2800元

b元

400元

25000元

4030元

注明:
①個人承擔(dān)醫(yī)療費(fèi)=實(shí)際醫(yī)療費(fèi)﹣按標(biāo)準(zhǔn)報(bào)銷的金額;
②個人承擔(dān)總費(fèi)用包括門診費(fèi)和住院費(fèi)中個人承擔(dān)的部分.
③本題中費(fèi)用精確到元.
請根據(jù)上述信息,解答下列問題:
(1)填空:a= , b=;
(2)求住院費(fèi)20001元及以上的部分報(bào)銷醫(yī)療費(fèi)用的比例c%;
(3)李大爺去年和今年的實(shí)際住院費(fèi)共計(jì)52000元,他本人共承擔(dān)了6850元,已知今年的住院費(fèi)超過去年,則李大爺今年實(shí)際住院費(fèi)用是多少元?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列計(jì)算中,正確的是( )
A.x2+x4=x6
B.2x+3y=5xy
C.(x32=x6
D.x6÷x3=x2

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:∠MON=36°,OE平分∠MON,點(diǎn)A,B分別是射線OM,OE,上的動點(diǎn)(A,B不與點(diǎn)O重合),點(diǎn)D是線段OB上的動點(diǎn),連接AD并延長交射線ON于點(diǎn)C,設(shè)∠OAC=x,

(1)如圖1,若AB∥ON,則
①∠ABO的度數(shù)是
②當(dāng)∠BAD=∠ABD時,x=
當(dāng)∠BAD=∠BDA時,x=;
(2)如圖2,若AB⊥OM,則是否存在這樣的x的值,使得△ABD中有兩個相等的角?若存在,求出x的值;若不存在,請說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】點(diǎn)B(-3,4)關(guān)于y軸的對稱點(diǎn)為A,則點(diǎn)A的坐標(biāo)是 .

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】有一家苗圃計(jì)劃植桃樹和柏樹,根據(jù)市場調(diào)查與預(yù)測,種植桃樹的利潤(萬元)與投資成本x(萬元)滿足如圖①所示的二次函數(shù);種植柏樹的利潤(萬元)與投資成本x(萬元)滿足如圖②所示的正比例函數(shù)=kx.

(1)分別求出利潤(萬元)和利潤(萬元)關(guān)于投資成本x(萬元)的函數(shù)關(guān)系式;

(2)如果這家苗圃以10萬元資金投入種植桃樹和柏樹,桃樹的投資成本不低于2萬元且不高于8萬元,苗圃至少獲得多少利潤?最多能獲得多少利潤?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知x=3是關(guān)于x的方程:4+ax=4x﹣a的解,那么a的值是( )

A. 4 B. 3 C. 2 D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】計(jì)算:
(1)(﹣12)﹣5+(﹣14)﹣(﹣39)
(2)
(3)
(4)

查看答案和解析>>

同步練習(xí)冊答案