【題目】已知直線交軸于點,交軸于點, 為的中點, 為射線上一點,連,將繞點順時針旋轉得線段,則的最小值為__________.
【答案】
【解析】根據(jù)題意,畫出圖形(如圖所示),直線交軸于點,交軸于點, 為的 中點,可得A(4,0),B(0,2),C(2,1),所以OB=2,0A=4.過點E作EM⊥x軸于點M,過點E作NC⊥x軸,過點E作EN⊥NC于點N,因為BD⊥DE,∠BOD=∠AMD=90°,即可證得∠ODB=∠MED,再由BD=DE,根據(jù)AAS即可判定△ODB≌△MED,根據(jù)全等三角形的對應邊相等可得OD=EM,OB=DM=2,設OD=EM=m,則OM=2+m,由點C為AB的中點可得OH=HM=2,即可求得HM=m,所以EN=m.又因C(2,1),EM=NH=m,可得NC=m-1.在Rt△CNE中,根據(jù)勾股定理可得,當 時, 最小,最小為,所以EC最小為.
科目:初中數(shù)學 來源: 題型:
【題目】觀察下列等式的規(guī)律,解答下列問題:
(1)按此規(guī)律,第④個等式為_________;第個等式為_______;(用含的代數(shù)式表示,為正整數(shù))
(2)按此規(guī)律,計算:
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,一棟居民樓AB的高為16米,遠處有一棟商務樓CD,小明在居民樓的樓底A處測得商務樓頂D處的仰角為,又在商務樓的樓頂D處測得居民樓的樓頂B處的俯角為.其中A、C兩點分別位于B、D兩點的正下方,且A、C兩點在同一水平線上,求商務樓CD的高度.
(參考數(shù)據(jù): , .結果精確到0.1米)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】某批發(fā)市場對外批發(fā)某品脾的玩具,其價格與件數(shù)關系如圖所示,請你根據(jù)圖中描述判斷:下列說法中錯誤的是( )
A. 當件數(shù)不超過30件時,每件價格為60元
B. 當件數(shù)在30到60之間時,每件價格隨件數(shù)增加而減少
C. 當件數(shù)為50件時,每件價格為55元
D. 當件數(shù)不少于60件時,每件價格都是45元
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,拋物線與軸交于點(1,0)和點,與軸交于點,對稱軸為直線=1.
(1)求點的坐標(用含的代數(shù)式表示)
(2)連接、,若△的面積為6,求此拋物線的解析式;
(3)在(2)的條件下,點為軸正半軸上的一點,點與點,點與點關于點成中心對稱,當△為直角三角形時,求點的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在四邊形ABCD中,對角線AC,BD相交于點O,AO=CO,BO=DO,且∠ABC+∠ADC=180°.
(1)求證:四邊形ABCD是矩形;
(2)若∠ADF:∠FDC=3:2,DF⊥AC,求∠BDF的度數(shù).
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠ACB=90°,∠B=30°,AD平分∠CAB.
(1)求∠CAD的度數(shù);
(2)延長AC至E,使CE=AC,求證:DA=DE.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】 如圖,△ABC是等邊三角形,P是三角形內一點,PD∥AB,PE∥BC,PF∥AC,若△ABC的周長為18,則PD+PE+PF=( 。
A. 18B. 9
C. 6D. 條件不夠,不能確定
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖△ABC三個頂點的坐標分別為A(0,﹣3)、B(3,﹣2)、C(2,﹣4),正方形網(wǎng)格中,每個小正方形的邊長是1個單位長度.
(1)畫出△ABC向上平移6個單位得到的△A1B1C1;
(2)以點C為位似中心,在網(wǎng)格中畫出△A2B2C2,使△A2B2C2與△ABC位似,且△A2B2C2與△ABC的位似比為2:1,并直接寫出點A2的坐標.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com