【題目】如圖,在四邊形ABCD中,對(duì)角線AC,BD相交于點(diǎn)O,AO=CO,BO=DO,且∠ABC+∠ADC=180°.
(1)求證:四邊形ABCD是矩形;
(2)若∠ADF:∠FDC=3:2,DF⊥AC,求∠BDF的度數(shù).
【答案】(1)見解析;(2)∠BDF=18°.
【解析】
(1)先證明四邊形ABCD是平行四邊形,求出∠ABC=90°,然后根據(jù)矩形的判定定理,即可得到結(jié)論;
(2)求出∠FDC的度數(shù),根據(jù)三角形的內(nèi)角和,求出∠DCO,然后得到OD=OC,得到∠CDO,即可求出∠BDF的度數(shù).
(1)證明:∵AO=CO,BO=DO,
∴四邊形ABCD是平行四邊形,
∴∠ABC=∠ADC,
∵∠ABC+∠ADC=180°,
∴∠ABC=∠ADC=90°,
∴四邊形ABCD是矩形;
(2)解:∵∠ADC=90°,∠ADF:∠FDC=3:2,
∴∠FDC=36°,
∵DF⊥AC,
∴∠DCO=90°﹣36°=54°,
∵四邊形ABCD是矩形,
∴CO=OD,
∴∠ODC=∠DCO=54°,
∴∠BDF=∠ODC﹣∠FDC=18°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在ABCD中,各內(nèi)角的平分線相交于點(diǎn)E,F,G,H.
(1)求證:四邊形EFGH是矩形;
(2)若AB=6,BC=4,∠DAB=60°,求四邊形EFGH的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】有兩個(gè)一元二次方程,,其中,,,下列四個(gè)結(jié)論中錯(cuò)誤的是( )
A.如果方程有兩個(gè)不相等的實(shí)數(shù)根,那么方程也有兩個(gè)不相等的實(shí)數(shù)
B.如果4是方程的一個(gè)根,那么是方程的另一個(gè)根
C.如果方程有兩根符號(hào)相同,那么方程的兩符號(hào)也相同
D.如果方程和方程有一個(gè)相同的根,那么這個(gè)根必是
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,矩形ABCD中,AB=2,BC=4,對(duì)角線AC的垂直平分線分別交AD、BC于點(diǎn)E、F,連接CE,則△DCE的面積為( )
A. B. C. 2D. 1
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠C=90°,AC=6cm,BC=8cm,點(diǎn)D從點(diǎn)C出發(fā),以2cm/s的速度沿折線C→A→B向點(diǎn)B運(yùn)動(dòng),同時(shí),點(diǎn)E從點(diǎn)B出發(fā),以1cm/s的速度沿BC邊向點(diǎn)C運(yùn)動(dòng),E到C時(shí)兩點(diǎn)同時(shí)停止運(yùn)動(dòng)。設(shè)點(diǎn)E運(yùn)動(dòng)的時(shí)間為ts().
(1)AB=__________cm, CE=__________cm;
(2)當(dāng)△BDE是直角三角形時(shí),求t的值;
(3)若四邊形CDEF是以CD、DE為一組鄰邊的平行四邊形,
①設(shè)平行四邊形CDEF的面積為Scm2,求S于t的關(guān)系式;
②是否存在某個(gè)時(shí)刻t,使□CDEF為菱形?若存在,求出t的值;若不存在,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,點(diǎn)B,C分別是∠MAN的邊AM、AN上的點(diǎn),滿足AB=BC,點(diǎn)P為射線的AB上的動(dòng)點(diǎn),點(diǎn)D為點(diǎn)B關(guān)于直線AC的對(duì)稱點(diǎn),連接PD交AC于E點(diǎn),交BC于點(diǎn)F。
(1)在圖1中補(bǔ)全圖形;
(2)求證:∠ABE=∠EFC;
(3)當(dāng)點(diǎn)P運(yùn)動(dòng)到滿足PD⊥BE的位置時(shí),在射線AC上取點(diǎn)Q,使得AE=EQ,此時(shí)是否是一個(gè)定值,若是請(qǐng)直接寫出該定值,若不是,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,△ABC的三個(gè)頂點(diǎn)分別是A(-2,0),B(0,3),C(3,0).
(1)在所給的圖中,畫出這個(gè)平面直角坐標(biāo)系;
(2)點(diǎn)A經(jīng)過平移后對(duì)應(yīng)點(diǎn)為D(3,-3),將△ABC作同樣的平移得到△DEF,點(diǎn)B的對(duì)應(yīng)點(diǎn)為點(diǎn)E,畫出平移后的△DEF;
(3)在(2)的條件下,點(diǎn)M在直線CD上,若DM=2CM,直接寫出點(diǎn)M的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】射擊隊(duì)為從甲、乙兩名運(yùn)動(dòng)員中選拔一人參加比賽,對(duì)他們進(jìn)行了六次測(cè)試,測(cè)試成績?nèi)缦卤恚▎挝唬涵h(huán)):
第一次 | 第二次 | 第三次 | 第四次 | 第五次 | 第六次 | 平均成績 | 中位數(shù) | |
甲 | 10 | 8 | 9 | 8 | 10 | 9 | 9 | ① |
乙 | 10 | 7 | 10 | 10 | 9 | 8 | ② | 9.5 |
(1)完成表中填空① ;② ;
(2)請(qǐng)計(jì)算甲六次測(cè)試成績的方差;
(3)若乙六次測(cè)試成績方差為,你認(rèn)為推薦誰參加比賽更合適,請(qǐng)說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】(1)解不等式2(1﹣x)<5﹣3x
(2)求不等式的正整數(shù)解
(3)解不等式組
(4)解不等式組,并把解集在數(shù)軸上表示出來.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com